DOI QR코드

DOI QR Code

Chinese Mathematics in Chosun

조선(朝鮮)과 중국수학(中國數學)

  • Received : 2012.10.30
  • Accepted : 2012.11.12
  • Published : 2013.02.28

Abstract

It is well known that the development of mathematics in eastern Asia was based on Chinese mathematics. Investigating Chinese mathematics books that were brought into Chosun, we study how Chinese mathematics influenced Chosun mathematics. Chinese mathematics books were brought into Chosun in three stages, namely basic mathematics books in the era of King SeJong(1397-1450), Chinese mathematics books influenced by western mathematics in the 17th century and finally those with commentaries on mathematics of Song-Yuan era in the 19th century. We also study the process of their importations.

중국 수학을 토대로 조선 수학이 발전된 것은 잘 알려져 있다. 이 논문에서는 조선에 유입된 중국 산서의 역사를 조사하여 중국 수학이 조선 수학에 끼친 영향을 연구한다. 15세기 세종(世宗)대에 들어온 중국 수학, 17세기 서양 수학의 영향을 받은 중국 수학과 19세기 중국에서 재정리된 송, 원대의 수학으로 나누어 이들이 유입되는 과정도 함께 조사한다.

Keywords

References

  1. 經國大典, http://krpia.co.kr;http://k5000.nurimedia.co.kr.
  2. 金容雲編, 韓國科學技術史大系, 數學編, 驪江出版社, 1985.
  3. 兪景老編, 韓國科學技術史大系, 天文學編, 驪江出版社, 1986.
  4. 朝鮮王朝實錄, http://sillok.history.go.kr.
  5. 郭書春主編, 中國科學技術史, 數學卷, 科學出版社, 2010.
  6. 吳文俊主編, 中國數學史大系, 北京師范大學出版社, 1999.
  7. 中國科學技術典籍通彙數學卷全五卷, 河南敎育出版社, 1993.
  8. 中國歷代算學集成上, 中, 下, 山東人民出版社, 1994.
  9. Li Yan and Du Shiran, Chinese Mathematics, A Concise history, trans. J. N. Crossley and A. W.-C. Lun, Claredon Press, 1987.
  10. Hong Sung Sa, Theory of Equations in the history of Chosun Mahtematics, Proceeding Book 2, The HPM Satellite Meeting of ICME-12, pp. 719-731, 2012.
  11. Hong Sung Sa, Hong Young Hee, SanHak HunDo and SanHak GyoSu(朝鮮의 算學 訓導와 算學敎授), The Korean Journal for History of Mathematics(한국수학사학회지) 19(2006), No. 3, pp. 1-20.
  12. Hong Sung Sa, Hong Young Hee, Nam ByungGil's theory of equations(南秉吉의 方程 式論), The Korean Journal for History of Mathematics(한국수학사학회지) 20(2007), No. 2, pp. 1-18.

Cited by

  1. Mathematical Structures and SuanXue QiMeng vol.26, pp.2_3, 2013, https://doi.org/10.14477/jhm.2013.26.2_3.123
  2. Jo Tae-gu's Juseo Gwan-gyeon and Jihe Yuanben vol.31, pp.2, 2013, https://doi.org/10.14477/jhm.2018.31.2.055
  3. Haidao Suanjing in Joseon Mathematics vol.32, pp.6, 2013, https://doi.org/10.14477/jhm.2019.32.6.259