References
- 김남희 외, 수학교육과정과 교재연구, 경문사, 2011.
- 고종숙, 수학 바로 보기, 여울, 2004.
- 민세영, 역사발생적 수학 학습-지도 원리에 관한 연구, 서울대학교 박사학위 논문, 2002.
- 정연준, 미적분의 기본정리에 대한 교수학적 분석, 서울대학교 박사학위 논문, 2010.
- 정연준, 이경화, 부정적분과 정적분의 관계에 관한 고찰, 학교수학 11(2009), No. 2, pp. 301-316.
- 한경혜, 수학사 도입의 이론적 근거 - 역사 발생 원리와 해석적 방법론, Proceeding of HPM2012 Book 1 (2012), pp. 59-72.
- Baron, M. E., The Origins of the Infinitesimal Calculus, Dover Publications, Inc., New York, 1969.
- Bell, J. L., The Continuous and the Infinitesimal in Mathematics and Philosophy, Polimetrica, International Scientific Publisher, Monza-Milano (Italy), 2006.
- Boyer, C. B., The History of the Calculus and Its Conceptual Development, Dover Publications, Inc., New York, 1949.
- Boyer, C. B., 김경화 역, 미적분학사: 그 개념의 발달, 교우사, 2004. (원저는 1949년 출판).
- Brousseau, G., Theory of Didactical Situations in Mathematics Education, Kluwer Academic Publishers, 1997.
- Child, J. M.,"The Lectiones Geometricae of Isaac Barrow", Monist 26(1916), No. 2, pp. 251-267. https://doi.org/10.5840/monist19162627
- Child, J. M., The Geometrical Lectures of Isaac Barrow, Open Court Publishing Co., 1916.
- Child, J. M., The Geometrical Lectures of Isaac Barrow (Lecture X), The Treasury of Mathematics (H. O. Midonick Ed.), Philosophical Library, New York, 1965, pp. 106-115.
- Coolidge, J. L.,"The Story of Tangents", The American Mathematical Monthly 58(1951), Issue 7, pp. 449-462. https://doi.org/10.2307/2306923
- Courant, R., Differential and Integral Calculus, Vol. 1, Interscience Publishers-John Wiley & Sons, Inc., 1988.
- Edwards, C. H., The Historical Development of the Calculus, Springer-Verlag, New York, 1979.
- Feingold, M.,"Newton, Leibniz and Barrow Too: An Attempt at a Reinterpretation", Isis 84(1993), No. 2, pp. 310-338.
- Flashman, M. E.,"Historical Motivation for a Calculus Course: Barrow' s Theorem", Vita Mathematica (R. Calinger Ed.) MAA Notes 40(1996), pp. 309-315.
- Gonzalez-Velasco, E. A., Journey Through Mathematics, Springer, New York, 2012.
- Jahnke, H. N., The use of original sources in the classroom: empirical research findings, History in Mathematics Education (J. Fauvel, & J. V. Maanen Eds.), Kluwer Academic Publishers, Dordrecht, 2000, pp. 291-328.
- Jankvist, U. T.,"A categorization of the whys and hows of using history in mathematics education,"Educational Studies in Mathematics 71(2009), No. 3, pp. 235-261. https://doi.org/10.1007/s10649-008-9174-9
- Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press, New York, 1972.
- Mahoney, M. S., Barrow's mathematics: between ancients and moderns, Before Newton: The Life and times of Isaac Barrow (M. Feingold Ed.), Cambridge University Press, New York, 1990, pp. 179-249.
- More, L. T., Isaac Newton: A biography, Dover Publications, New York, 1962.
- Radford, L.,"Historical formation and student understanding of mathematics,"History in Mathematics Education (J. Fauvel, & J. V. Maanen Eds.), Kluwer Academic Publishers, Dordrecht, 2000, pp. 143-170.
- Sierpinska, A., Understanding in Mathematics, The Palmer Press, Washing, DC, 1994.
- Stewart, J., Calculus-Early Transcendentals, Belmont, Brooks & Cole., CA, 2008.
- Struik, D. J., A Source Book in Mathematics: 1200-1800, Harvard University Press, 1969.
- Whiteside, D. T.", Isaac Newton: Birth of aMathematician,"Notes and Records of the Royal Society of London 19(1964), pp. 53-62. https://doi.org/10.1098/rsnr.1964.0005
Cited by
- Exploring Newton and Leibniz’s Intuition and Heuristic Pedagogy on the Fundamental Theorem of Calculus vol.29, pp.4, 2019, https://doi.org/10.29275/jerm.2019.11.29.4.525
- Reconsidering Newton’s Intuition Related to the Fundamental Theorem of Calculus vol.31, pp.1, 2013, https://doi.org/10.29275/jerm.2021.02.31.1.1