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Abstract：This describes the formulation for the free vibration of joined conical-cylindrical shells with 
uniform thickness using the transfer of influence coefficient. This method was developed based on 
successive transmission of dynamic influence coefficients, which were defined as the relationships between 
the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell 
having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, 
circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a 
conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations 
by using the transfer matrix of the shell. Once the transfer matrix of a single component has been 
determined, the entire structure matrix is obtained by the product of each component matrix and the 
joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined 
conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical 
examples, and through comparison with the results of previous researchers.  
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1. Introduction

Conical and cylindrical shells are commonly used 
as structural elements in many industrial fields such 
as the aerospace, submarine, chemical and civil 
industries and so on. Therefore, studies of their 
dynamic characteristics have been carried out by 
many researchers, and developed using various 
analytical methods. However, in contrast to the 
large number of studies on cylindrical and conical 

shells considered separately, the analysis of free 
vibration in joined conical-cylindrical shells has not 
been widely reported in the literature. 

To briefly review studies for combined shells, EI 
Damatty et al1) carried out experimental and 
analytical studies of the free vibration to assess the 
dynamic behaviors of combined conical-cylindrical 
shells. Patel et al2) studied the free vibration of 
laminated anisotropic conical-cylindrical and 
conical-cylindrical-conical shells using a finite 
element method. Irie et al3) applied a transfer 
matrix technique to calculate numerically the free 
vibration for joined conical-cylindrical shells. 
Efraim and Eisenberger4) found the vibration 
frequencies of segmented axisymmetric shells using 
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a dynamic stiffness matrix. Caresta et al5) 
introduced a different approach to obtain the free 
vibrational characteristics of coupled conical- 
cylindrical shells. Two different methods 
corresponding to a wave solution and a power 
series method were used to obtain the shell 
displacements. Futhermore, expressions for the 
conical shell displacements were obtained for both 
the Donnel-Mushtari and Flügge theories. Lee et 
al6) investigated the free vibration characteristics of 
joined spherical-cylindrical shells with various 
boundary conditions using Flügge’s shell theory and 
Rayleigh’s energy method. Also, Soedel7) collected 
and reviewed the comprehensive literature dealing 
with the vibration of shells and plates.

In this report, the authors formulate an analysis 
algorithm for the free vibration of joined 
conical-cylindrical shell by applying the transfer 
influence coefficient method, which was developed 
on the basis of the concept of the successive 
transmission of the dynamic influence coefficients. 
We apply the shell theory of matrix differential 
equations of first-order by applying the transfer 
matrix to the system and develop a new algorithm 
for the calculation of natural frequencies and modes 
by the transfer of influence coefficient8∼9). 

From computation for the simple model, we 
compared the results of the present algorithm with 
those of others. We confirmed that the present 
algorithm could obtain solutions of high accuracy 
for joined shell structures and easily treat all 
boundary conditions by adequately varying the 
values of spring constants.    

2. Theoretical Analysis

2.1 Formulation for conical shell
Fig. 1 shows the geometry and coordinates of a 

joined conical-cylindrical shell. The semi-vertex 
angle of the truncated conical shell is denoted by 

 , the radius of large edge by , the meridional 
length by , the thickness by   , the cylindrical 

coordinates     are taken as shown in the 
figures. 

The equations of the shell based upon the 
Flügge theory are written by Flügge10) as:
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where   is the mass per unit volume and   is the 
radian frequency. The components of the shearing 
force are given 
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and the Kelvin-Kirchhoff shearing force and shear 
resultant are respectively,
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Fig. 1 Geometry and coordinate system of joined 
conical-cylindrical shell
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The components of the membrane force are giv-
en by,
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And those of the moment are:
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In the above equation    and   are displace-
ments of the shell in the    and  directions, re-
spectively, and the slope of the displacement   ex-
pressed as   .  

The flexural rigidities expressed as  

 , in terms of the Young’s modulus 
  and Poisson’s ratio  .

For a steady state vibration of the shell, one 
may take 

            cos·
      sin ·                (6)

where   denotes the circumferential wave number.
For simplicity of analysis, the following non-di-

mensionalized quantities are also introduced
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Substituting Eqs. (6)∼(7) into Eqs. (1)∼(5) and 
modifying the results, the matrix differential equa-
tion on state vector can be written as follows 




                          (8)

where the state vector          


  is denoted by the dimensionless vari-

ables,    is the 8×8 square matrix and the co-
efficients of the matrix are obtained as 
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2.2 Formulation for circular cylindrical shell
For a circular cylindrical shell, the radius of the 

middle surface is denoted by , the axial length 
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by , the cylindrical coordinates     are 

taken as shown in Fig. 1. The governing equations 
of a circular cylindrical shell are derived as a 
special case of a conical shell by taking the 
limiting values → , and 
sin→  tan→  The 
matrix equation has the same expression as Eq.  
(8). In this case, the non-zero elements of the 
coefficients matrix   become 
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2.3 Formulation of the transfer matrix 
From Eq. (8), the state vector    can be 

expressed as 

                          (11)

Using the field transfer matrix    of the shell, 
and substitution  of the expression (11) into Eq. 
(8) yields 




                      (12)

The matrix is conveniently determined by 
integrating Eq. (12) numerically with the starting 
value     (the unit matrix) which is obtained 

by taking    in Eq. (12). In the numerical 

calculation, the elements of the transfer matrix are 

conveniently determinate by using the 
Runge-Gutta-Gill method. The relationship between  

the state vectors       and  
     of the arbitrary jth element is obtained 

as

                     (13)

where   is the field transfer matrix from nodal 

circle   to   and the superscript denotes the 
transposition. The physical quantities with 
tilde(symbol ‘∼’) and hat(symbol ‘∧’)  represent 
the non-dimensional physical quantities on the left- 
and right-hand side of the nodal circle, respectively.

The relationship between the state vectors of the 
both-side ends of the arbitrary elements   is 
expressed by the 4×4 sub-matrices     and 

  of the field transfer matrix as   
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From the equilibrium of the force at nodal circle 
where a conical and a cylindrical shell are joined 
together, we obtain

  
                          (15)

where   is the point transfer matrix at nodal 

circle  , and there are spring constants. 
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where       and   is the non-dimensional 

quantities of spring constants, and the coefficients 
become 
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2.4 Transfer of influence coefficient  
The relationship between displacement vector  , 

and force vectors    and    at arbitrary nodal 

circle   is defined as 

 




  




    (18)

where   and   are the 4×4 symmetric matrices 

of dynamic influence coefficients. The transmission 

rule of   and   at every nodal circle is 

obtained in the recurrent form.
From Eq. (14) and (18), the field transmission 

rule of the dynamic influence coefficients in the jth 
element is given by  

      …               (19)

where

            (20)

Substituting Eq. (15) into Eq. (18) the point 
transmission rule of dynamic influence coefficients 
at nodal circle   is expressed as 

                             (21)

where

                           (22)

The dynamic influence coefficient matrix at the 
left-hand side of the system is expressed as  

 


                            (23)

where   is the point matrix at nodal circle 0. 

When   is singular, we cannot explicitly obtain 

the inverse matrix of  . Hence, the modified 

measures to compute   by using   directly are 

introduced instead of Eq. (19) as

                             (24)

where

           (25)

By adequately varying the value of spring  

constants     and    in   of Eq. (25), we 

can deal with all the boundary conditions at the 
left-hand edge of the system.    

2.5 Coordinate transformation   
At nodal circle where a conical and a cylindrical 

shell are joined together, the following continuity 
and equilibrium relations must be satisfied:  
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where the superscripts (c) and (o) express the 
conical and cylindrical shells, respectively. Eq. (26) 
is expressed by the displacement transformation
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It is with the inverse matrix of →  as
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From Eq. (27) and (29), we obtain


  

→ 
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3. Numerical results and discussion
In this section, the free vibration of joined 

conical-cylindrical shells is investigated numerically 
using the foregoing theory. To confirm the validity 
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Table 1 Comparison of frequencies parameter for joined shell with free-clamped boundary conditions
  Mode     Order 

Irie[3] Efraim[4]
Donnel

Mushtari[5]
Flügge theory[5] Present

  

0
   
   

1
T
2
3

0.5047
---

0.9312
0.9566

0.503799
0.609852
0.930942
0.956379

0.503752
0.609855
0.930916
0.956315

0.505354
0.609816
0.930904
0.956292

0.503791
0.609851
0.930943
0.956380

1 1
2
3
4

0.2930
0.6368
0.8116
0.9316

0.292875
0.635834
0.811454
0.931565

0.292908
0.635819
0.811446
0.931481

0.293357
0.636844
0.811434
0.931458

0.292890
0.635856
0.811464
0.931577

2 1
2
3
4

0.1010
0.5032
0.6916
0.8592

0.099968
0.502701
0.691305
0.859114

0.102034
0.502899
0.691479
0.859017

0.100087
0.502819
0.691353
0.858971

0.101043
0.502862
0.691434
0.859161

of the present analysis method, the computed 
natural frequency parameters are compared with 
those given by Irie at al3), Efraim et al4) and 
Caresta et al5) for joined conical-cylindrical shell of 
free-clamped  boundary condition in Tables 1. 

The numerical data is   
    and   . From Table 1, it is 

observed that the present results are in fairly good 
agreement with those of previous researchers. The 
small discrepancies in results may be attributed to 
the different shell theories and analytic methods 
used in the papers. When   , the frequency 
values of the mode with order         
corresponds to the first purely torsional mode. This 
torsional frequency parameter is omitted by Irie et 
al3), and reported by Efraim et al4) and Caresta et 
al5). 

Fig. 2 and Fig. 3 show the frequency parameter 
  versus the circumferential  wave number   of 
joined conical-cylindrical shell for free-clamped and 
both simply supported boundary conditions.

From these figures, the general behavior of the 
frequency parameter curves is that the frequencies 
first decrease to a minimum value and then 
increase with the circumferential  wave  number.  
However, the frequencies of 1st, 3rd and 6th orders 

Fig. 2 Variation of frequency parameters with the 
circumferential wave number for clamped- 
clamped boundary conditions

Fig. 3 Variation of frequency parameters with the 
circumferential wave number for both 
simply supported boundary conditions  
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Fig. 6 Mode shapes of conical-cylindrical shell for free-clamped boundary conditions

Fig. 4 Variation of frequency parameters with the 
semi-vertex angle of joined shell for free- 
clamped boundary conditions

Fig. 5 Variation of frequency parameters with the 
semi-vertex angle of joined shell for both 
simply supported boundary conditions

in Fig. 3 initially increase to a peak, then decrease 
to a minimum value, after which they increase 
steadily.

Fig. 4 and Fig. 5 show variations of frequency 
parameters with the semi-vertex angle of joined 
conical-cylindrical shell for free-clamped and 
clamped-simply supported boundary conditions, 
respectively. As shown in the figures, the 
frequencies change in a wave- like manner with 
the variation of the circumferential wave number 
except for the cases of    and   . But, when 
   and    in Fig. 4, with an increase of the 
circumferential wave numbers, the frequencies 
become larger monotonically, although the rate of 
increases varies in relation to the circumferential 
wave number. In contrast, for the values    and 
   in Fig. 5, with an increase of  the  
circumferential  wave  numbers,  the frequencies 
first increase until peaking at approximately  , 
then decrease steadily. For     and    in 
Fig. 5, the frequencies first increase to a maximum 
and then decrease with the circumferential wave 
numbers. The material dimensions used in these 
figures are  m    m   m   
and   cscsec  The boundary conditions are 

teated by the spring constants. Here, we set them 

as      and       for the simply 
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supported end and          for the  

clamped end.
Fig. 6 shows the mode shapes of joined 

conical-cylindrical shell for the semi-vertex angle
 presented in Fig. 2. Here, the first 
subscript 0 attached to   represents the number 

of circumferential waves appearing on the mode 
shape and the second subscript 1 is the order of 
the vibration mode. The solid lines present the 
composition of the meridional/axial and radial 

displacements   , and the broken lines 
projected along the center lines show the 

circumferential displacement   . 

4. Conclusions

The authors formulated an algorithm for the free 
vibration analysis of joined conical-cylindrical shells 
using the transfer of influence coefficient method, 
which was developed on the basis of the concept 
of the successive transmission of dynamic influence 
coefficients. We applied the shell theory of matrix 
differential equations of first-order by applying the 
transfer matrix to the system and developed a 
Matlab program for the calculation of natural 
frequencies and modes by the transfer of influence 
coefficient. Furthermore we carried out numerical 
computations in order to confirm its effectiveness. 
The present method was found to obtain highly 
accurate results, and was able to adjust for varying 
boundary conditions by modifying the values of the 
spring constants.    
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