DOI QR코드

DOI QR Code

Change in the Textural Properties of Fresh Ginseng after Its Immersion in a Calcium Carbonate Solution

수삼의 탄산칼슘용액 침지에 따른 물성 변화

  • Choi, In-Hag (Department of Companion Animal and Animal Resources Science, Joongbu University) ;
  • Kim, Hak-Yoon (Faculty of Environmental Studies, Keimyung University) ;
  • Lee, Gee-Dong (Department of Food Science and Biotechnology, Joongbu University)
  • 최인학 (중부대학교 애완동물자원학과) ;
  • 김학윤 (계명대학교 환경대학) ;
  • 이기동 (중부대학교 식품생명과학과)
  • Received : 2012.10.11
  • Accepted : 2013.01.07
  • Published : 2013.02.28

Abstract

This study investigated the textural changes after the calcium-pectin bonding of ginseng roots and their vinegar and calcium solution immersion. The strength and breakdown of the ginseng roots increased according to the increase in the calcium carbonate concentration, with the highest in the 0.7~1.0% calcium carbonate. The hardest and softest ginseng roots were obtained in the 1.0% calcium carbonate concentration. The strength, brittleness and hardness of the ginseng roots that were soaked in 1% calcium carbonate and 5~6% acidity vinegar continued to increase with the long-term storage of the ginseng root drink. The softness of the ginseng root that was dipped in 5% acidity vinegar with 1.0% calcium carbonate decreased with the long-term storage of the ginseng root drink. Thus, calcium and vinegar immersion of ginseng roots could prevent softening and clouding during the long-term storage of the ginseng root drink.

본 연구는 인삼을 칼슘 및 식초에 침지함으로서 인삼 pectins의 칼슘결합(calcium bonding)에 의한 물성변화를 조사하였다. 인삼뿌리의 강도(strength)와 부서짐성(breakdown)은 탄산칼슘 농도의 증가에 따라 증가하였으나 탄산칼슘 0.7~1.0%에서 가장 높게 나타났고, 인삼뿌리의 경도(hardness)는 탄산칼슘 농도 1.0%에서 가장 높았고, 연화정도(softness)는 탄산칼슘 농도 1.0%에서 가장 낮았다. 1% 탄산칼슘을 용해한 식초에 침지한 인삼뿌리의 물성 중 강도, 부서짐성 및 경도는 산도 5%, 6% 칼슘용액에 침지한 인삼뿌리가 60일 이후부터 계속 증가하여 90일경에 높게 나타났다. 연화 정도는 1% 탄산칼슘과 산도 5% 식초에 침지한 인삼뿌리만이 줄어들어 인삼뿌리음료의 장기저장 중 음료가 혼탁해지는 것을 방지할 수 있었다.

Keywords

References

  1. Lee GH (1997) Food chemistry. Hyungseolchulpansa, Seoul, Korea, p 188-198
  2. Kim DH (1990) Food chemistry. Tamgudang, Seoul, Korea, p 344-345
  3. Kastner H, Einhorn-stoll U, Senge B (2012) Structure formation in sugar containing pectin gels - Influence of $Ca^{2+}$ on the gelation of low-methoxylated pectin at acidic pH. Food Hydrocolloids, 27, 42-49 https://doi.org/10.1016/j.foodhyd.2011.09.001
  4. Lee HA, Kim KY (2001) The effect of calcium concentration and temperature on the gelation of Aigeok polysaccharide. Korean J Food Sci Technol, 33, 7-11
  5. Capel F, Nicolai T, Durand D, Boulenguer P, Langendorff V (2006) Calcium and acid induced gelation of (amidated) low methoxyl pectin. Food Hydrocolloids, 20, 901-907 https://doi.org/10.1016/j.foodhyd.2005.09.004
  6. Fraeye I, Colle I, Vandevenne E, Duvetter T, Buggenhout SV, Moldenaers P, Loey AV, Hendrickx M (2009) Influence of pectin structure on texture of pectin-calcium gels. Innovative Food Sci Emerging Technol, 11, 401-409
  7. Jang SY, Baek CH, Jeong KH, Park NY, Jeong YJ (2005) Effects of vinegar on the solubility of calcium. Korean J Food Preserv, 12, 112-116
  8. Lee SK, Park JH (2002) Studies of egg-shell calcium(1) - The effects of elution condition of egg-shell calcium on elution quantity and ionization rate, J Fd Hyg Safety, 17, 183-187
  9. Jang SY, Park NY, Jeong YJ (2005) Effects of organic acids on solubility of calcium. Korean J Food Preserv, 12, 501-506
  10. Song JC (1994) Food Materials. Kyomoonsa, Seoul, Korea, p 405-407