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An Improved Poincaré-like Carleman Linearization  

Approach for Power System Nonlinear Analysis 
 

 

Zhou-Qiang Wang*, Qi Huang
†
 and Chang-hua Zhang** 

 

Abstract – In order to improve the performance of analysis, it is important to consider the 

nonlinearity in power system. The Carleman embedding technique (linearization procedure) provides 

an effective approach in reduction of nonlinear systems. In the approach, a group of differential 

equations in which the state variables are formed by the original state variables and the vector 

monomials one can build with products of positive integer powers of them, is constructed. In 

traditional Carleman linearization technique, the tensor matrix is truncated to form a square matrix, 

and then regular linear system theory is used to solve the truncated system directly. However, it is 

found that part of nonlinear information is neglected when truncating the Carleman model. This paper 

proposes a new approach to solve the problem, by combining the Poincaré transformation with the 

Carleman linearization. Case studies are presented to verify the proposed method. Modal analysis 

shows that, with traditional Carleman linearization, the calculated contribution factors are not 

symmetrical, while such problems are avoided in the improved approach. 
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1. Introduction 
 

Due to the large scale interconnection of power network 

and the increase of nonlinear devices (such as power 

electronic devices), the effective analysis of modern power 

system is becoming more and more difficult. It is shown 

that the nonlinear effect should not be neglected, and quite 

a lot of researches are conducted to deal with this issue, 

e.g., normal form and modal series [1-3], or other nonlinear 

analysis methods are developed to perform higher order 

modal analysis of nonlinear power system model. However, 

these methods still deal with the state equations of original 

model, in which the complex nonlinear system theory has 

to be used. The Carleman embedding technique [4-6], on 

the other hand, by embedding the new variables formed by 

all the monomials one can build with products of positive 

integer powers of the original state variables, replaces the 

original nonlinear model with an infinite-dimensional 

linear model. Such an equivalent model can be truncated to 

be finite-dimensional linear system with an upper triangular 

square matrix. Therefore, linear theory can be directly applied.  

In current available approach, when truncating the 

Carleman model, it is inevitable that part of nonlinear 

information is lost. This paper proposes a novel approach, 

in which the Poincaré transformation approach is 

introduced to deal with the Carleman linearization system, 

in an effort to solve this issue.  

The effects of the algorithms are evaluated by numerical 

simulations. The evaluation is accomplished by comparing 

the approximate solutions, as well as their contribution 

factors, with the true solution by using Prony analysis. To 

facilitate the comparison, the indices proximity measures 

and SNR (Signal Noise Ratio), are defined to ensure that 

the Prony results best fit the true solution. 

The paper is organized as follows. In section 2, the 

Carleman embedding technique and its truncated lineari-

zation and linear analysis are briefly reviewed. Section 3 

deduces the solution of the Carleman model with the 

Poincaré transformation method. Section 4 defines the 

second-order contribution factors according to the linear 

contribution factor, and the indices SNR and proximity 

measures, for quantifying the trajectories of state variables. 

In section 5, two test systems are used to compare the 

traditional Carleman linear method with the proposed 

approach. At the end, the second-order contribution factors 

of the both solutions are discussed further. Section 6 

concludes the paper.  

 

 

2. Review of Carleman Linear Analysis 

 

2.1 Carleman Embedding Technique 

 

Consider a power system modeled as:  
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 ( )X = f Xɺ  (1) 

 
where, 

T[ , , ]
1 2

X n

nx x x R= ∈⋯  is the n dimensional state 

vector and X0= X(0). f : R
n→Rn is a smooth vector field 

and 
T( ) [ ( ), ( ), ( )]

1 2
f X X X Xnf f f= ⋯ .  

One can expand Eq. (1) by performing a Taylor series in 

the neighborhood of a stable equilibrium point XSEP , and 

use again X  as the new state vector to denote X XSEP− . 

The Taylor series expansion is  
 

 ( ) ( )1 2 3X A X A X X A X X X= + ⊗ + ⊗ ⊗ +ɺ ⋯  (2) 

 
where, system matrix [ / ]1 XA f X

SEP
= ∂ ∂  is the n×n 

dimension Jacobian matrix. 2A  is the n×n2 dimension 

Hessian matrix [3, 6], 3A  is the tensor of the n × n3 

dimension. X belongs to the convergence domain of Taylor 

series. The symbol ⊗  denotes the Kronecker product. We 

introduce the notation: 
 

 
[ ]

X X X X kmk

k times

R
−

= ⊗ ⊗ ⊗ ∈⋯������� , k=1,2,….  (3) 

 
Then, the Eq. (2) can be rewritten as: 
 

 
[ ]

1

X A X
k

k

k

∞

=

=∑ɺ  (4) 

 
where, the A kn m

k R
×∈ , 

1

k

n k
m

k

 + −
 
 
 
≜ , k=1,2,….., are the 

matrix valued functions.  

In the Carleman embedding technique [4, 6], the power 

series representation (4) is first truncated to N. Then 

truncated system is: 
 

 
[ ]

1

X A X
N

k

k

k=

=∑ɺ  (5) 

 
Define the time derivative of j-th Kronecker product: 
 

[ ]

( - )

[ ]

( )
(

)

1

1
1

1

X X X
X

A I I

I A I I I I A X

j N j
j times

k n n

k
j times

k j

n k n n n n k

d
d

dt dt

− +

=

+ −

 
⊗ ⊗ ⊗  

 = = ⊗ ⊗ ⊗

+ ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

∑
⋯�������

⋯
�����

⋯ ⋯

-

 

 
[ ]( )

1
1

1

A X
N j

j k j

k

k

− +
+ −

=
∑≜  (6) 

 
where, 

1A A
k k
= for j =1, and for j >1 

 

( - )1

A A I I I A I I

I I A

j

k k n n n k n n

j times

n n k

= ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗

+ + ⊗ ⊗ ⊗

⋯ ⋯
�����

⋯ ⋯
 

 
And then define the vectors of Kronecker-products as a 

new vector field: 
 

 
[ ] [ ][ , , , , ]2X X X X j T⊗ ≜ … …  (7) 

where, dim( ) 2X NM n m m⊗ = = + + +⋯  

Then, a truncated Carleman linearization of original state 

Eq. (1) can be obtained: 
 

 X A X
⊗ ⊗ ⊗=ɺ  (8) 

 
where, 
 

 1 1

1 1 1

1 2

2 2

1 1

1

A A A

0 A A
A

0 0 0 A

N N
r r

r r

N

n n
N

N

R = =

×
⊗ −

 
  ∑ ∑ = ∈
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮
 

 
And the matrix 

1

1A  is exactly the matrix defined in (2). 

 

2.2 Modal analysis of carleman linearization 
 

The matrix A⊗ is a
1 1

N Nr r

r r
n n

= =
×∑ ∑ dimension upper 

triangular matrix, and the eigenvalues can be obtained by 

 

 
1 1 2 2

1 1 1A A 0N NI I I A I Aλ λ λ λ⊗− = − − − =⋯   (9) 

 
Solving the above equation, the eigenvalues of the 

system can be obtained,  

 

 

( )

( )
( )

( )

1

2

A Λ

N

J

J
eig

J

λ

λ

λ

⊗ ⊗

 
 
 = =
 
 
  

⋱
 (10) 

 

where,  
 

 ( ) ([ , , , ])1

1 2 n
J diagλ λ λ λ= ⋯   

 ( ) ([ , , , ])2

1 1 1 2 n nJ diagλ λ λ λ λ λ λ= + + +⋯  

 ( ) ({ })
1 2 n

N

k k k
J diagλ λ λ λ= + + +⋯  

 , , ,1 2 nk k k⋯ =1,2,……,n 

 

It is shown that the eigenvalue space of Carleman linear 

model is formed by the eigenvalues from the linear space 

of the matrix
1

1A ,
2

1A and the matrix 1A
N
, which contain 

eigenvalues associated with the higher-order modal 

interaction. 

In this paper, to reduce the complexity in the deduction, 

only N =2 is considered. However, the developed methods 

here applies for N >2 cases. Suppose U⊗ and V⊗ are the 

matrices of the right and left eigenvectors of A⊗ , 

respectively. In linear theory, taking similar transform and 

inverse transform with X U Y⊕ ⊕ ⊕= , the free response of 

system (8) is:  
 

 e ( )ΛX U V X 0t
⊗⊗ ⊗ ⊗ ⊗=  (11) 

 

and the analytical solutions is [6]:  
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 ( )

2

1 2
1 2

1 1

j k

n n n
t t

i ij j ik k

j k n

x t u c e u c e
λ λ

+
⊗ ⊗

= = +

= +∑ ∑  (12) 

 

where,  

 
2 3

1 0

1

n n n

j jp p

p

c v x
+ +

⊗

=

= ∑   j =1,2,……,n 

2 3

2 0

1

n n n

k kq q

q

c v x
+ +

⊗

=

= ∑   k = n +1, n +2,……, n +n2 

 

In which, , ,...,1

1 2j nλ λ λ λ=  are the first-order modes 

eigenvalues, and , ,...,2

1 1 1 2k n nλ λ λ λ λ λ λ= + + +  are the 

second-order combined eigenvalues arising from the 

modal interaction of the linear modes eigenvalues. The 
, Uij iku u⊗ ⊗ ⊗∈ are the eigenvectors corresponding to the 

eigenvalues ,1 2

j kλ λ . , ( )0 0 X 0p qx x ⊗∈  are the initial condition. 

 

 

3. Solving the Truncated Carleman Linearized 

Model by Poincaré Transformation 

 

Reconsider (8) and (12), it is found that the higher-order 

terms 
1Ak  have been replaced by 1A

k
 in the process of 

obtaining eigenvalues and solution. In other words, the 2nd 

order combined eigenvalues belong to 
2

1A  but do not 

belong to 
1

2A . In order to include the ignored higher order 

terms, system (8) is split into: 

 

 
2X A X A XS N

⊗ ⊗ ⊗ ⊗ ⊗= + +ɺ ⋯  (13) 

 

where,  

 

 

1

1

2

1

A 0
A

0 A
S

⊗
 

=  
 

, 

1

2

2

0A
A

0 0
N

⊗  
=  
 

 

 

The state-space equation for the i-th state variable of j-th 

order is given by 

 

 
[ ] [ ] [ ]( )2X X Xj j j ji j

i ix A H= + ⊗ɺ  (14) 

 

where, 
j

iA is the j-th order and i-th row of the AS

⊗
. 2

jiH  is 

the j-th order and i-th row element of the 2AN

⊗
. 

Suppose U⊗  and V⊗  are the matrices of the right and 

left eigenvectors of AS

⊗
, respectively. The state Eq. (13) in 

y-coordinates, after performing a X U Y⊗ ⊗ ⊗=  coordinate 

transformation, is 

 

 
2Y Λ Y V A U YN

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗= + +ɺ ⋯   (15) 

 

where, ( , , , , )
1 1 2 1 2

Λ
k k k k k k j

diag J J Jλ λ λ λ λ λ
⊗

+ + + += ⋯⋯ ⋯ , the j-th 

order state equations for Jordan form variables are : 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

( )( )

( )( )
( )

( )( )

1

2

2

2

2

V

j

j j j

j j j

j j j

jn j j

H U U y y

H U U y y
y J y

H U U y y

λ ⊗

 ⊗ ⊗
 

⊗ ⊗ = +  
 
 ⊗ ⊗ 

ɺ
⋯

 (16) 

 

where, the m-th state equations are : 

 

 
[ ] [ ] [ ]

1 1

n n
j j j m j

m m m kl k l

k l

y y C y yλ ⊗

= =

= + +∑∑ɺ ⋯⋯  (17) 

 

where, 
m

klC ⊗
 is the klth element of the matrix 

 

 
[ ][ ( )] [ ]2

1

1

2

j
n

m jP j m

mp kl

p

C v H U U C⊗ ⊗ ⊗

=

= ⊗ =∑ . 

 

The term in the brackets is an nj-by-nj+1 matrix; mpv⊗  is 

the mp-th element of the matrix V⊗ . 

Introducing a new vector field [ , , ]
1 2

Z T

n
z z z= ⋯  and 

[ ] [ ][ , , , , ]2Z Z Z Z j T⊗ = … … , and using the Poincaré trans-

formation ( )
2

Y = Z +h Z⊗ ⊗ ⊗
 [7], the above equation can 

be rewritten as: 
 

 ( ) ( )2

1

Z Λ Z Z Λ Z Zk

k

F F
∞

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

=

= + + = +∑ɺ ⋯  (18) 

 
where, 

 

( ) ( ) ( )Z V A U Z Λ Z Z Λ Z
k Nk k k
F h Dh⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗= + −  (19) 

 

Examination of (18) suggests that in order to remove the 

higher order terms, one can introduce a linear operator 

AL on function hk to form the homological equation: 

 

 ( ) ( ) ( )
A k k

y Z Λ Z Λ Z
k

L h Dh h⊗ ⊗ ⊗ ⊗ ⊗= −   (20) 

 

The solution of the homological equation can be 

obtained if and only if 
1

1
0

n k j

l l il
m λ λ+ −

=
− ≠∑ . The 

approximate solution of system in z-coordinates is a set of 

decoupled linear differential equations: 

 

 Z Λ Z
⊗ ⊗ ⊗=ɺ ; [ ] [ ] [ ]

Z Λ Z
j j j=ɺ ;  

j j j

m m m
z zλ=ɺ  (21) 

 

The solution of 
j

m
z  and 

j

m
y  is: 

 

 ( ) 0

j
mtj j

m mz t e z
λ=  (22) 

 
1 1

2
n n

j j m j

m m kl k l

k l

y z h z z
= =

= +∑∑  (23) 

 

where, 2

m

m kl

kl j

k l j

C
h

λ λ λ

⊗

=
+ −

, 
j

k l jλ λ λ+ ≠ . 
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With the inverse transformX U Y
⊗ ⊗ ⊗= , the solution of 

j

ix  is: 
 

( )

0 0 0

1 1 1 1

( )= 2

j j

jj
lm k

n n n n
ttj j m j

i im m im kl k l

m m k l

x t u z e u h z z e
λ λλ +⊗ ⊗

= = = =

+∑ ∑ ∑∑  

m = 1,2,…,n ; j = 1,2,…,N ; i = 1,2,…, nj  (24) 

 

where, the symbols ,1 2

m mλ λ  and imu
⊗
are the same as above. 

The initial condition 0

j

mz  of ( )j

mz t  can be computed by 

solving the nonlinear equations ( )0 0 2 0Y = Z +h Z
⊗ ⊗ ⊗

. 

 

 

4. Quantitative Comparison of the Responses 

 

4.1 Nonlinear contribution factors 

 

In a linear system, the solution of a state variable is: 

 

 0

1 1

( )= =j j

n n
t t

i ij j ij

j j

x t u y e e
λ λ

σ
= =
∑ ∑  (25) 

 
The term 0=ij ij ju yσ  are referred to as “linear 

contribution factors”, describing the contribution of the j-th 

mode in the oscillations of the state i for a given 

disturbance.  

Comparing the solution (25), (12) and (24), the second 

order solutions given in (12) and (24) may be rewritten as: 
 

 ( )

2

1 2
1 2

1 1

j k

n n n
t t

i ij ik

j k n

x t e e
λ λσ σ

+

= = +

= +∑ ∑  (26) 

 
( )

2 22

1 1 1

( )=

j

jj
lm k

n n n
ttj

i im ikl

m k l

x t e e
λ λλσ σ +

= = =

+∑ ∑∑  (27) 

 

Here,
1 1

ij ij ju cσ ⊗= and
2 2

ik ik ku cσ ⊗= , 2 0

j

im im mu zσ ⊗= and

22iklσ =
0 01

2
jn m j

im kl k lm
u h z z⊗

=∑ . Thus, the second-order contri-

bution factors are defined in a manner very similar to the 

linear contribution factors described above. Note that there 

are two types of second-order contribution factors. The first 

type of the second-order contribution factors,
1

ijσ or 2imσ , 

gives the contribution of the mode
1

jλ or
j

m
λ to the response 

of the state i. It’s clear that the linear contribution factor ijσ  

is a part of
1

ijσ or 2imσ . The second type of the second-order 

contribution factors, 
2

ikσ or 22iklσ , gives the contributions of 

the combination modes
2

kλ or
j

k lλ λ+ to the response of 

state i. 

 

4.2 Comparing with results from prony 

 

In order to compare the accuracy of the solutions 

obtained from different methods, the contribution of a 

mode in an approximate solution is compared with that 

obtained by performing Prony analysis on the true 

responses. 

Suppose the solution ( )x n is the discrete form of the 

SBS (Step by Step) solution ( )x t  of original system (1). 

And the Prony fitted response of original system (1) can be 

written as follows [8]: 

 

 ˆ( )
1

i i

p
j t

i

i

x n Ae e
θ λ

=

=∑ △ɶ ; 2i i ij fλ α π= +  (28) 

 
Thus, the exponential modes, containing the frequency 

if , the amplitude
iA
ɶ , the attenuation factor iα  and the 

phase iθ , can be obtained. 

The solutions (26) and (27) consist of a sum of weighted 

exponential oscillations, where the weights are the 

contribution factors. The frequencies of oscillation are 

determined by the imaginary parts of the eigenvalues λ. 

Therefore, the exponential modes obtained by Prony 

analysis can be regarded as a reference when comparing 

the contribution factors in linear method, traditional 

Carleman linear method and the proposed method. For 

example, ijσ , ( , )1 2

ij ikσ σ , ( , )2 22im iklσ σ can be compared 

with
iA
ɶ  under the same frequency if  or iλ  in the 

response (25), (26) and (27) .  

In order to ensure the accuracy of Prony’s fitting curve, 

the SNR based on Root Mean Square and proximity 

measure are introduced [9]: 

 

 

ˆ| ( ) ( ) |

log

| ( ) |

2

1

2

1

20

t

t

n

n

n

n

x n x n

SNR

x n

=

=

 
 −
 = −  
 
 
 

∑

∑
 (dB) (29-1) 

 

ˆ| ( ) ( ) |

| ( ) |

1

1

100

t

t

n

n

n

n

x n x n

error

x n

=

=

−

= ×
∑

∑
(%) (29-2) 

 

where, nt is number of data points. A large SNR indicates 

that the fitting of data in time domain are accurate. A small 

error indicates that the fitting solution with included 

higher-order terms is close to the true solution (SBS 

solution). For general cases, the SNR ≥ 40 dB and error < 

10% are considered as a reference to estimate the fitting 

degree. 

 

 

5. Case Study and Discussion 

 

5.1 Test system #1 

 

A single-machine infinite bus (SMIB) system ([10, 

Section 12.3]) shown in Fig. 1 is selected to demonstrate 

the effect of methods both Carleman linearization and 
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improved method, with parameters given in the figure. The 

generator is modeled using three-order model ( , , qEω δ ′ ), 
and equipped with a thyristor (one-order fast-response) 

exciter as excitation system. In analyzing the system 

oscillation, a three-phase short-circuit-to-ground fault is 

applied at line CCT2 and cleared in 0.1s. The linear modes 

of the test system are shown in Table 1. 

 

 

 

T 

j0.93 

j0.5 CCT1 

CCT2 

LT 
HT 

j0.15 

EB 

Infinite Bus 

 
SN=99999MVA 

X’d=0.1, TJ=100s 
 

Fig. 1. The SMIB system 

 

Table 1. The system modes of the test system #1 

Mode# EIGENVALUE Fre.(Hz) Damp.(%) 

1 -19.733181 0 100 

2,3 -0.398092±6.756324i 1.075302 5.881939 

4 -0.020874 0 100 

5 -0.408973 0 100 

 

Figs. 2~5 show the time response of ( , , ,q fdE Eω δ ′ ) in 

SMIB by four different methods. It is clear that the 

trajectory of Poincaré transformation combined with 

Carleman embedding technique (P-Carleman) is closer to 

the SBS curve than the trajectory of Carleman linearization 

(linear-Carleman). 
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Fig. 2. Time response of ω in SMIB 
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Fig. 3. Time response of δ in SMIB 
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Fig. 4. Time response of qE′  in SMIB 
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Fig. 5. Time response of Efd in SMIB 
 

In order to compare the accuracy of the both methods, 

the contribution factors ( ijσ ,
1

ijσ , 2im
σ ) and (

2

ik
σ , 22ikl

σ ), are 

respectively listed in descending order in Table 2 and Table 

3, whilst the SBS curve of ω  and its Prony fitting curve 

are shown in Fig. 6. In this case, SNR=97.66dB and error 

= 0.86%, evidence that the results of Prony analysis are 

effective. The modes from Prony analysis are listed in 

Table 4. 

Since complex conjugate pairs play a decisive role in the 

oscillation, they are selected for further consideration 

here. In Table 2, for any mode, the contribution factors 

obtained by three methods are almost the same. The only 

complex conjugate pairs in Table 2, modes 2 and 3, are 

corresponding to the modes 7 and 8 in Table 4. 

 

 
( )2 3

fλ =1.075302(Hz) ≈
( )

Pr

7 8

onyfλ =1.074864(Hz) 

 ( ) ( ) ( )( ) ( ) ( )1

2 3 2 3 2 2 3ij ij imσ λ σ λ σ λ≈ ≈ ≈ ( )7 8Aɶ  

 

In Table 3, the second type of 2nd order contribution 

factors (
2

ik
σ , 22ikl

σ ) are listed in descending order. The 2nd 

order combination modes (2,2) and (3,3), are corres-

ponding to the modes 4 and 5 in Table 4.  

 

( , )( , )2 2 3 3
fλ  =1.075302×2(Hz) ≈

( )

Pr

4 5

onyfλ =2.137168(Hz) 

( , )( , ) ( , )( , )( ) ( )2

2 2 3 3 22 2 2 3 3ik iklσ λ σ λ≈ ≈ ( )4 5Aɶ  

 

A marked difference of the contribution factors of the 
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2nd order modes (2,5) and (3,5) calculated with different 

methods occurs in Table 3. Considering their cor-

responding modes 9 and 10 in Table 4, the comparison can 

be obtained as: 

 

( , )( , )2 5 3 5
fλ =1.075302 (Hz) ≈

( )

Pr

9 10

onyfλ = 0.977549(Hz) 

( , )( , ) ( , )( , )( ) ( )2 -3

2 5 3 5 22 2 5 3 50.18003 10ik iklσ λ σ λ= × ≠  

                     -3
0.52699 10= × ( )9 10A= =ɶ 0.00054451 

 

This reveals the 2nd order contribution factors 22iklσ  are 

more accurate and closer to the corresponding modes’ 

contribution in the true solution. In other words, the 

solution from combined Poincaré transformation method 

can obtain better results.  

 

Table 2. 1st order contribution factors of ω by 3 methods  

Modei ijσ  1

ijσ  
2imσ  

1 0.00010994815 0.00010921993 0.00011034864 

2,3 0.00393543232 0.00394550970 0.00391870952 

4 0.00000146376 0.00000170010 0.00000169795 

5 0.00001327590 0.00003948575 0.00003899603 

 

Table 3. 2nd order contribution factors of ω by 2 methods 

Mode ij 
2

ikσ  (*10-3) Mode ij 22iklσ  (*10-3) 

(2,5)(3,5) 0.180033561696 (2,5)(3,5) 0.526990527282 

(2,3) 0.073591608632 (2,2)(3,3) 0.063209737945 

(2,2)(3,3) 0.065019946925 (2,3) 0.051712425053 

(1,2)(1,3) 0.005789310134 (1,2)(1,3) 0.005922683228 

(2,4)(3,4) 0.002050779958 (1,5) 0.004447825264 

(1,5) 0.000923751727 (2,4)(3,4) 0.002368960209 

(1,1) 0.000031561947 (5,5) 0.000571100045 

(5,5) 0.000023818398 (1,1) 0.000038780642 

 (1,4)  0.000006278597 (1,4) 0.000014288119 

(4,5)  0.000000302655 (4,5)  0.000000219002 

(4,4) 0.000000000009 (4,4) 0.000000000031 
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Fig. 6. Prony fitting curve of ω in SMIB 

Table 4. Prony results of SBS curve ω (10 orders, SNR= 
97.66dB, error =0.8571%) 

Mode i AMPLITUDE  Fre.(Hz) 
Attenuation  

factor 
Damp. ratio 

1 0.00000086 0.000000 -0.409293 -1.000000 

2,3 0.00002342 1.738400 -1.357540 -0.123337 

4, 5 0.00006393 2.137618 -0.842109 -0.062576 

6 0.00011580 0.000000 -2.997782 -1.000000 

7,8 0.00374687 1.074864 -0.414209 -0.061217 

9,10 0.00054451 0.977549 -1.286471 -0.205002 

 

5.2 Test system #2 

 

Consider a WSCC-9 (Western System Coordinating 

Council) power system [11], shown in Fig. 7. The 

parameters are referred to [12]. A three-phase short-circuit-

to-ground fault is applied at Bus GEN1-230 and cleared in 

0.15s. There are 4 complex conjugate pairs, as shown in 

Table 5. 
 

 

 

G1 

STNA-230 

GEN1-230 

Area1 

Area2 

STNB-230 

STNC-230 G2 

GEN2-230 GEN3-230 

G3 

 

Fig. 7. The WSCC-9 system. 

 

Table 5. The system modes of the test system #2 

Mode# EIGENVALUE Fre.(Hz) Damp.(%) 

1 -19.060167 0 100 

2,3 -0.111826±12.063696i 1.919997 0.926924 

4,5 -0.033345±7.964903i 1.267654 0.418655 

6,7 -5. 261004±6.770876i 1.077618 61.356026 

8,9 -5. 180107±4.787777i 0.761998 73.436953 

10 -0.108179 0 100 

11 -1.353255 0 100 

 

After the same analysis in the Test System #1, the time 

response of ( , , ,2 21 2 2q fdE Eω δ ′ ) obtained by the 4 methods 

are respectively shown in Figs. 8~11. It is shown that P-

Carleman solution can get better results.  

The contribution factors ( ijσ ,
1

ijσ , 2imσ ) and (
2

ikσ , 22iklσ ) 

are respectively listed in descending order in Table 6 and 

Table 7, whilst the SBS curve of 2ω  and its Prony fitting 

curve are shown in Fig. 12. The SNR=117.76dB and 

error =0.25%, evidence that the fitting curve and the 

results of Prony analysis are effective. The modes of Prony 

analysis are listed in Table 8. 

In Table 6, the complex conjugate pairs, modes 2 and 3, 

are corresponding to the modes 35 and 36 in Table 8, as 

100% 0.86%

97.66( )

SBS fit

SBS

x x
error

x

SNR dB

−
= × =

=
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well as the modes 4 and 5 corresponding to modes 31 and 

32. 

 

( )2 3
fλ =1.919997 (Hz) ≈

( )

Pr

35 36

onyfλ =1.913633(Hz) 

( )( )2 3ijσ λ =0.001597 ≠ ( )( )1

2 3ijσ λ = 0.001997 

               ≠ ( )( )2 2 3imσ λ =0.001760 ≈ ( )35 36Aɶ = 0.001790 

( )4 5
fλ =1.267654 (Hz)≈

( )

Pr

39 40

onyfλ =1.260021 (Hz) 

( , )( , )( )2

4 4 5 5ikσ λ = ( , )( , )( )22 4 4 5 5iklσ λ ≈ ( )31 32Aɶ  

 

Note that the numerical value of the first order 

contribution factors in P-Carleman solution, as in Test 

System #1, is closest to the reference. The second type of 

contribution factors about combination modes (2,2), (3,3), 

(4,4) and (5,5) in Table 7 are corresponding to the modes 

21, 22, 31 and 32 in Table 8.  

 

( , )( , )2 2 3 3
fλ  = 1.919997×2 (Hz) ≈

( )

Pr

21 22

onyfλ =3.912319(Hz) 

( , )( , ) ( , )( , ) ( )( ) ( )2

2 2 3 3 22 2 2 3 3 21 22ik ikl Aσ λ σ λ≠ ≈ ɶ =0.00001654 

( , )( , )4 4 5 5
fλ  = 1.267654×2 (Hz) ≈

( )

Pr

31 32

onyfλ  =2.505604 (Hz) 

( , )( , )( )2

4 4 5 5ikσ λ ≈ ( , )( , )( )22 4 4 5 5iklσ λ ≈ ( )31 32Aɶ =0.0001255 

 

This reveals the contribution factors of these second 

order dominant modes by the proposed method can 

approximate to the analytical results of SBS’s solution 

better. 
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Fig. 8. Time response of ω2 in WSCC-9 
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Fig. 9. Time response of δ21 in WSCC-9 
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Fig. 10. Time response of 2qE′  in WSCC-9 
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Fig. 11. Time response of Efd2 in WSCC-9 

 

Table 6. 1st order contribution factors of ω2 by 3 methods 

Modei ijσ  
1

ijσ  
2imσ  

1 0.00013629248 0.00013523945 0.00013428955 

2, 3 0.00159717172 0.00199739074 0.00176072469 

4, 5 0.00480099693 0.00512797306 0.00470748315 

6, 7 0.00340184486 0.00337565301 0.00319804656 

8, 9 0.00027653200 0.00029283114 0.00029094858 

10 0.00089714798 0.00910328501 0.00841446193 

11 0.00003579549 0.00004219124 0.00004434574 

 

Table 7. 2nd order contribution factors of ω2 by 2 methods 

Mode ij 
2

ikσ   Mode ij 22iklσ  

(4,5) 0.011062666997 (4,5) 0.010691489092 

(2,3) 0.001370322074 (2,3) 0.001646168744 

(5,7)(4,6) 0.000572065489 (2,6)(3,7) 0.000589887643 

(2,6)(3,7) 0.000571635314 (5,7)(4,6) 0.000521756285 

(5,6)(4,7)  0.000522475105 (5,6)(4,7) 0.000460889280 

(6,8)(7,9) 0.000459949510 (6,8)(7,9) 0.000453688079 

(6,7)  0.000434131788 (2,7)(3,6) 0.000403034301 

(2,7)(3,6)  0.000389799079 (6,7)  0.000370910975 

(6,6)(7,7)  0.000384518377 (3,9)(2,8) 0.000355072048 

(6,9)(7,8) 0.000342744709 (6,9)(7,8) 0.000336614634 

(4,8)(5,9) 0.000312403953 (6,6)(7,7) 0.000335715697 

(3,9)(2,8) 0.000306230293 (4,8)(5,9) 0.000322395755 

(5,8)(4,9) 0.000259130016 (5,8)(4,9) 0.000265566934 

(8,9) 0.000221393053 (8,9) 0.000242992678 

(3,8)(2,9) 0.000169734618 (3,8)(2,9) 0.000196268451 

------ ------ ------ ------ 

(4,4)(5,5) 0.000124897021 (4,4)(5,5) 0.000121393501 

(2,2)(3,3) 0.000014123153 (2,2)(3,3) 0.000017238124 
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Fig. 12. Prony fitted curve of ω2 in WSCC-9 

 

Table 8. Prony results of SBS curve ω2 (49 orders, SNR= 

114.34dB, error=0.2541%) 

Mode i AMPLITUDE  Fre.(Hz) Attenuation factor Damp. ratio 

1, 2 0.00000050 1.301541 -0.162314 -0.019844 

3, 4 0.00000056 0.551010 -0.006102 -0.001762 

5 0.00000001 0.000000 -0.629168 -1.000000 

6 0.00000839 0.000000 -1.994287 -1.000000 

7, 8 0.00000056 0.893122 -0.311967 -0.055507 

9,10 0.00000161 1.664609 -0.574859 -0.054880 

11,12 0.00000149 2.025568 -0.343341 -0.026968 

13,14 0.00000203 2.359376 -0.200662 -0.013535 

15, 16 0.00000145 2.611001 -0.227443 -0.013863 

17,18 0.00001760 3.258839 -0.574378 -0.028040 

19,20 0.00000376 3.415605 -0.256717 -0.011961 

21,22 0.00001654 3.912319 -0.276250 -0.011237 

23,24 0.00000566 3.800176 -0.069553 -0.002913 

25,26 0.00005173 3.716064 -0.608358 -0.026046 

27,28 0.00005128 3.170452 -0.193052 -0.009691 

29,30 0.00075967 2.984969 -5.128878 -0.263780 

31,32 0.00012550 2.505604 -0.097714 -0.006207 

33,34 0.00003352 2.449569 -0.277033 -0.017997 

35,36 0.00179097 1.913633 -0.127583 -0.010610 

37,38 0.00010250 1.856931 -1.116372 -0.095248 

39,40 0.00459397 1.260021 -0.025866 -0.003267 

41,42 0.00157342 1.232018 -0.150042 -0.019379 

43,44 0.00002596 0.626456 -0.236758 -0.060041 

45,46 0.00078983 0.047023 -0.198318 -0.557319 

47,48 0.00460625 0.935691 -5.853981 -0.705590 

49 0.00008506 -0.000000 -22.241012 -1.000000 

 

5.3 Discussion  
 
It is shown that the solution and contribution factors 

obtained by the proposed approach are closest to the true 

solutions. In this sub-section, the difference in contribution 

factors as described above, is discussed.  

The contribution factors ijσ ,
1

ijσ , 2imσ ,
2

ikσ , 22iklσ and 

Prony’s results in the above case studies are corresponding 

to the following eigenvalues respectively: 

[ , , , ]1

1 2 nλ λ λ λ= ⋯  

( )

, ,..., , , ,..., ,2

1 1 2 1 2 2 3 2

1

2 2n n

n times n times

λ λ λ λ λ λ λ λ λ λ λ
− −


= + + + +


��������� ���������  

�
( )

, ,..., , ,3 3 4 3

12

2 2n n

timesn times

λ λ λ λ λ λ
−−


+ +



⋯
���������  

 

That is to say, the contributions of the 
2

ijλ  and 
2

jiλ , that 

should be equal in general, are combined. According to 

different methods in handling 
2

ijλ  and 
2

jiλ  separated, the 

distribution of 
2

ikσ , 22iklσ  of ω in SIMB are shown in Fig. 

13 and Fig. 14 respectively.  

In Fig. 13, it is visually seen that the contribution factor 

,

2

2 5σ  is not equal to ,

2

5 2σ , and such condition appears in 

the distribution of all contribution factors. On the contrary, 

the contribution factor ( , )22 2 5iσ  is equal to ( , )22 5 2iσ  as in 

Fig. 14. Actually 22iklσ  = 22ilkσ  in the whole distribution. 

The solutions obtained by the Carleman linearization are 
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Fig. 13. The distribution of contribution factors 2

ikσ  of ω

in SIMB 
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Fig. 14. The distribution of contribution factors 22iklσ  of 

ω in SIMB 
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not as good as that by the Poincaré-like Carleman 

linearization method because the structure of Carleman 

linear solution violates the interactional equivalence of 
2

ijσ =
2

jiσ . 

 

 

6. Conclusion 

 

The advantage embedding technique is that it replaces 

the original system with an equivalent system by 

embedding the new state variables and their differential 

equations. Hence, linear methods can be directly applied to 

solve the system. However, due to the neglected part of 

nonlinear information in the truncated Carleman lineari-

zation, it does not perform well in the modal analysis of 

power system, especially in the analysis of nonlinear modal 

interaction. In this paper, the Poincaré transfor-mation 

approach combined with Carleman embedding technique is 

introduced to improve the performance of analysis in 

power system, especially, all the nonlinear information is 

included.  

The numerical simulations verify the effects of the 

improved approach by comparing the approximate curves 

(the linear solution, the linear-Carleman solution and the P-

Carleman solution) with the true response, as well as their 

contribution factors. Simulation results demonstrate that 

the combined approach can get much better results. The 

proposed approach improves the performance, hence more 

accurate results can be obtained, by avoiding the asymmetry 

in handling the contribution factors. 

 

 

Appendix 
Poincaré Transformation 

 

In this appendix, the Poincaré Transformation is briefly 

introduced from the pure mathematics, detailed in [7].  

 

A. General setting 
 
Consider the formal vector-valued power series  

 
( ) ( ) ( )2 3

2

k

k

x Ax f x f x Ax f x
∞

=

= + + + = +∑ɺ ⋯  nx R∈ ,  

: n nf R R→  (A-1) 

 

in n variables with complex coefficients.  

where, fk(x) is homogeneous of order (k+1) in the x. A is 

the canonical form of the the original vector field. 

 

B. Poincaré theorem and its transformation  
 
The following theorem is the fundamental result of 

Poincaré’s dissertation.  

Poincaré Theorem. If the eigenvalues of the matrix A 

are nonresonance, the equation  

 x Ax= +⋯  (A-2) 

 

can be reduced to a linear equation  

 

 y Ay=ɺ  (A-3) 

 

by a formal change of variable x y= +⋯  (the dots 

denote series starting with terms of degree greater than 

one, i.e. hk(y), k=2,3,…. ).  

The identity changes of coordinates are also called 

Poincaré Transformations.  

 

C. Transformation to poincaré normal form 

 

Substitute the Poincaré transformation x = y +∑hk(y) 

into the Eq. (A-2), and denote by D = Ə/Əy the differential 

operator.  
 

 [ ( )] { ( ) ( )}1

2 2

k k k

k k

y I Dh y Ay A h y f y
∞ ∞

−

= =

= + + +∑ ∑ɺ  (A-4) 

 

Provided the [I+Dhk(y)] is invertible and approximated 

by 
 

 [ ( )] ( ) ( ( ))1 2

k k k
I Dh y I Dh y Dh y−+ = − + +⋯  (A-5) 

 

Substituting (A-6) into (A-5), one can get the result, 
 

 ˆ ( )
2

k

k

y Ay f y
∞

=

= +∑ɺ  (A-6) 

 
where, ˆ ( ) ( ) ( ) ( )k k k kf y f y Ah y Dh y y= + − . 

It is clear that the ideal simplification would be to take hk 

so that 
 

 ( ) ( ) ( )k k kDh y y Ah y f y− =  (A-7) 

 
a substitution which would remove the terms of order k 

from the vector field. The vectors hk(y), k≥3 may be 

determined from the solution of the homological equation 

 

 ( ( )) ( ) ( )A k k kL h y Dh y y Ah y= −  (A-8) 

 
where, the linear operator LA converts every field into the 

linear fields ( ) ( )k kDh y y Ah y− . hk is the unknown and the 

right expression is the known vector field. One should note 

that this is a problem of linear algebra. 

Denote by ie  an eigenvector of A with eigenvalue iλ . 
{ , }1 2 ne e e⋯ be a standard basis for the coordinates 
( , )1 2 ny y y⋯ ∈Rn. Let the eigenvectors of LA are the 

vector-valued monomials ( ) ( , , , )1 2

1 2
nmm m

k n ih y y y y e= ⋯  of 

degree ∑ml =k, which form a basis for the finite 

dimensional vector space kH of all valued polynomials of 

precise degree k. If A is diagonal, the eigenvalues of LA 
depend linearly on the eigenvalues of A,  
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 [ ]
1

n
m m

A i l l i i

l

L y e m y eλ λ
=

= −∑  (A-9) 

 

Thus, the operator LA is also diagonal. The unknown kh  

can be obtained from the following 

 

 [ ] ( ) ( )
1

n

l l i k k

l

m h y f yλ λ
=

− =∑  (A-10) 

 

Therefore, if 
1

0
n

l l il
m λ λ

=
− ≠∑ , the terms of order k in 

(A-7) can be removed from the vector field. The Eq. (A-7) 

can be transform into linear equation, 

 

 y Ay=ɺ  (A-11) 

 

Finally, the solution of the original equation with initial 

value 0 0x Uy= , the eiginvalues jλ  and hk(y), can be written 

as 
 

 

( )
0

1 2

1

j

n
t k

ij n
j k

l l i

l

f y
x u y e

m

λ

λ λ

∞

= =

=

= +

−
∑ ∑

∑
 (A-12) 

 
where, iju U∈ . 
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