DOI QR코드

DOI QR Code

유기 플래쉬 사이클(OFC)의 열역학적 성능 특성

Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC)

  • 김경훈 (금오공과대학교 기계공학과) ;
  • 정영관 (금오공과대학교 기계공학과) ;
  • 박상희 (금오공과대학교 기계공학과)
  • Kim, Kyounghoon (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Jung, Youngguan (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Park, Sanghee (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2013.01.30
  • 심사 : 2013.02.28
  • 발행 : 2013.02.28

초록

Recently a novel cycle named organic flash cycle (OFC) has been proposed which has improved potential for power generation from low-temperature heat sources. This study carries out thermodynamic performance analysis of OFC using various working fluids for recovery of low-grade heat sources in the form of sensible energy. Special attention is focused on the optimum flash temperature at which the exergy efficiency has the maximum value. Under the optimal conditions with respect to the flash temperature, the thermodynamic performances of important system variables including mass flow ratio, separation ratio, heat addition, specific volume flow rate at turbine exit, and exergy efficiency are thoroughly investigated. Results show that the exergy efficiency has a peak value with respect to the flash temperature and the optimum working fluid which shows the best exergy efficiency varies with the operating conditions.

키워드

참고문헌

  1. V. A. Prisyazhnink, "Alternative tends in development of thermal power plant", Applied Ther. Eng, Vol. 28, 2008, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  2. K. H. Kim, C. H. Han, K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, No. 20, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  3. W. Nowak, A. A. Stachel, A. Borsukiewicz-Gozdur, "Possibilities of implementation of a absorption heat pump in realization of the Clausius-Rankine cycle in geothermal power station", Applied Ther. Eng, Vol. 28, 2008, pp. 335-340. https://doi.org/10.1016/j.applthermaleng.2006.02.031
  4. T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources", Energy, Vol. 35, 2010, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  5. A. Delgadotorres, L. Garciarodriguez, "Double cascade organic Rankine cycle for solar-driven reverse osmosis desalination", Desalination, Vol. 216, 2007, pp. 306-313. https://doi.org/10.1016/j.desal.2006.12.017
  6. B. F. Tchanche, G. Papadakis, A. Frangoudakis, "Fluid selection for a low-temperature solar organic Rankine cycle", Applied Thermal Eng, Vol. 29, 2009, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  7. K. H. Kim, "Study of working fluids on thermodynamic performance of organic Rankine cycle", Trans. of the Korean Society of Hydrogen Energy, Vol. 22, 2011, pp. 223-231.
  8. J. H. Jeong, Y. T. Kang, "Analysis of a refrigeration cycle driven by refrigerant steam turbine", Int J Refrig, Vol. 27, 2004, pp. 33-41. https://doi.org/10.1016/S0140-7007(03)00101-4
  9. D. Manolakos, G. Papadakis, E. Mohamed, S. Kyritsis, K. Bouzianas, "Design of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination", Desalination Vol. 183, 2005, pp. 73-80. https://doi.org/10.1016/j.desal.2005.02.044
  10. D. Manolakos, G. Papadakis, S. Kyritsis, K. Bouzianas, "Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination", Desalination, Vol. 203, 2007, pp. 366-374. https://doi.org/10.1016/j.desal.2006.04.018
  11. D. W. Sun, "Solar powered combined ejector-vapour compression cycle for air conditioning and refrigeration", Energy Conversion and Management, Vol. 38, 1997, pp. 479-491. https://doi.org/10.1016/S0196-8904(96)00063-5
  12. H. Vidal, S. Colle, "Simulation and economic optimization of a solar assisted combined ejectorvapor compression cycle for cooling applications", Applied Thermal Eng, Vol. 30, 2010, pp. 478-486. https://doi.org/10.1016/j.applthermaleng.2009.10.008
  13. H. Wang, R. Oeterson, T. Herron, "Design study of configurations on system COP for a combined ORC and VCC", Energy, Vol. 36, 2011, pp. 4809-4820. https://doi.org/10.1016/j.energy.2011.05.015
  14. K. H. Kim, J. Y. Jin, H. J. Ko, "Performance analysis of a vapor compression cycle driven by organic Rankine cycle", Trans. of the Korean Society of Hydrogen Energy, Vol. 23, 2012, pp. 521-529. https://doi.org/10.7316/KHNES.2012.23.5.521
  15. T. Ho, S. S. Mao, R. Greif, "Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy", Energy, Vol. 42, 2012, pp. 213-223. https://doi.org/10.1016/j.energy.2012.03.067
  16. T. Ho, S. S. Mao, R. Greif, "Increased power production through enhancements to the Organic Flash Cycle (OFC)", Energy, Vol. 45, 2012, pp. 686-695. https://doi.org/10.1016/j.energy.2012.07.023
  17. T. Yang, G. J. Chen, T. M. Gou, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region", Chemical Engineering J, Vol. 67, 1997, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  18. J. Gao, L. D. Li, S. G. Ru, "Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule", Fluid Phase Equilibrium, Vol. 224, 2004, pp. 213-219. https://doi.org/10.1016/j.fluid.2004.05.007

피인용 문헌

  1. Characteristics of Thermodynamic Performance of Heat Exchanger in Organic Rankine Cycle Depending on Pinch Temperature Difference vol.26, pp.6, 2015, https://doi.org/10.7316/KHNES.2015.26.6.590