DOI QR코드

DOI QR Code

Measurement of Ultrasonic Nonlinearity Parameter of Fused Silica and Al2024-T4

Fused Silica와 Al2024-T4의 비선형 파라미터 측정

  • Kang, To (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Taekgyu (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Song, Sung-Jin (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Hak-Joon (School of Mechanical Engineering, Sungkyunkwan University)
  • 강토 (성균관대학교 기계공학부) ;
  • 이택규 (성균관대학교 기계공학부) ;
  • 송성진 (성균관대학교 기계공학부) ;
  • 김학준 (성균관대학교 기계공학부)
  • Received : 2013.01.07
  • Accepted : 2013.02.13
  • Published : 2013.02.28

Abstract

Nonlinearity parameter is an inherent property of materials measuring fundamental acoustic amplitude($A_1$) and second harmonic amplitude($A_2$). However, measurement of $A_1$ and $A_2$ has complex calibration procedure, many researchers prefer to measure relative nonlinearity parameter rather than absolute nonlinearity parameter. But, relative nonlinearity parameter is only detect materials degradation with various degradation samples, it is limited application in determining third order elastic constants of materials. Therefore, in this study, the piezoelectric detection method is adopted to measure absolute nonlinearity parameter due to experimental simplicity compare to capacitive detector. Linearity of measurement system is verified by $A_1^2vsA_2$ plot, and we measured ultrasonic nonlinearity parameters of fused silica and Al2024-T4.

금속 재료의 비선형 파라미터는 고유한 물성치로서 기본주파수의 음압의 크기($A_1$)과 2차고조파의 음압의 크기($A_2$)을 측정하면 산정할 수 있다. 하지만, 실험적으로 $A_1$$A_2$를 측정하는 것은 매우 복잡한 변환 과정이 필요하기 때문에 현재 많은 연구자들이 비선형 파라미터의 절대값을 측정하지 않고, 전압 변화를 관찰하는 비선형 파라미터의 상대값을 측정하고 있다. 하지만, 비선형 파라미터 상대값으로는 재료의 물성치를 대변할 수가 없기 때문에, 열화도에 따른 시편 측정에만 사용할 수 있는 제약이 있다. 따라서 본 연구에서는 정전용량 측정기법(capacitive detector)보다는 비용이 적게 소모되고 현장 적용이 가능한 압전형 수신기법(piezoelectric detection)을 이용하여 비선형 파라미터의 절대값을 측정하기 위한 시스템을 구축하였다. $A_1^2vsA_2$ 그래프로 시스템의 선형성을 검증하고 시험편인 fused silica와 Al2024-T4에 대한 비선형 파라미터를 측정하였다.

Keywords

References

  1. M. A. Breazeale and D. O. Thompson, "Finite-amplitude ultrasonic waves in aluminum," Applied Physics Letters, Vol. 3, No. 5, pp. 77-78 (1963) https://doi.org/10.1063/1.1753876
  2. M. A. Breazeale and J. Ford, "Ultrasonic studies of the nonlinear behavior of solids," Journal of Applied Physics, Vol. 36, No. 11, pp. 3486-3490 (1965) https://doi.org/10.1063/1.1703023
  3. W. B. Gauster and M. A. Breazeale, "Detector for measurement of ultrasonic strain amplitudes in solids," Review of Scientific Instruments, Vol. 37, No. 11, pp. 1544-1548 (1966) https://doi.org/10.1063/1.1720040
  4. G. E. Dace, R. B. Thompson and O. Buck, "Measurement of the acoustic harmonic generation for materials characterization using contact transducers," Review of Progress Quantitative Nondestructive Evaluation, Vol. 11, pp. 2069-2076 (1992)
  5. D. C. Hurely and C. M. Fortunko, "Ultrasonic parameter ${\beta}$ using a Michelson interferometer," Measurement Science and Technology, Vol. 8, pp. 634-642 (1997) https://doi.org/10.1088/0957-0233/8/6/009
  6. R. E. Green, "Treatise on Materials Science and Technology," Chapter III, Academic, New York and London, Vol. 3 (1974)
  7. K. Brugger, "Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media," Physical Review, Vol. 134, pp. A981-997 (1964) https://doi.org/10.1103/PhysRev.134.A981
  8. J. K. Na and M. A. Breazeale, "Ultrasonic nonlinear properties of lead zirconate-titanate ceramics," Journal of the Acoustical Society of America, Vol. 95 No. 6, pp. 3213-3221 (1994) https://doi.org/10.1121/1.409985
  9. R. Truell, C. Elbaum and B. B. Chick, "Ultrasonic methods in solid state physics," Academic Press, New York and London (1969)
  10. W. T. Yost and M. A. Breazeale, "Adiabatic third-order elastic constants of fused silica," Journal of Applied Physics, Vol. 44, No. 4. pp. 1909-1910 (1973) https://doi.org/10.1063/1.1662477
  11. R. A. Graham, "Determination of third-and fourth-order longitudinal elastic constants by shock compression techniques-Application to Sapphire and Fused Quartz," Journal of the Acoustical Society of America, Vol. 51, No. 5, pp. 1576-1581 (1972) https://doi.org/10.1121/1.1913001
  12. E. H. Bohardus, "Third order elastic constants of Ge, MgO, and Fused $SiO_2$," Journal of Applied Physics, Vol. 36, No. 8, pp. 2504- 2513 (1965) https://doi.org/10.1063/1.1714520
  13. P. Li, W. T. Yost, J. H. Cantrell and K. Salama, "Dependence of acoustic nonlinearity parameter on second phase precipitates of aluminum alloys," Ultrasonic Symposium, pp. 1113-1115 (1985)
  14. D. J. Barnard, "Variation of nonlienarity parameter at low fundamental amplitudes," Applied Physics Letters, Vol. 74, No. 17, pp. 2447-2449 (1999) https://doi.org/10.1063/1.123876
  15. J. H. Cantrell, "Nonlinear dislocation dynamics at ultrasonic frequencies," Journal of Applied Physics, Vol. 105, No. 4, pp. 043520-1-7 (2009) https://doi.org/10.1063/1.3081972
  16. J. K. Na, W. T. Yost, J. H. Cantrell and G. L. Kessel, "Effects of surface roughness and nonparallelism on the measurement of the acoustic nonlinearity parameter in steam turbine blades," Review of Progress in Quantitative Nondestructive Evaluation, Vol 19, pp. 1417-1424 (1999)
  17. Y. L. Hinton, J. K. Na, W. T. Yost and G. L. Kessel, "Field measurement of the acoustic nonlinearity parameter in turbine blades," NASA Center for Aerospace Information, pp. 1-7 (2000)