DOI QR코드

DOI QR Code

DSSCs Efficiency by Tape Casting Pt Counter Electrode and Different Thickness Between Two Substrates

Pt 상대전극 성막 두께와 두 기판 간격에 따른 DSSC의 효율 특성

  • Kwon, Sung-Yeol (Department of Electrical Engineering, Pukyong National University) ;
  • Yang, Wook (Department of Electrical Engineering, Graduate School Pukyong National University) ;
  • Zhou, Zeyuan (Department of Electrical Engineering, Graduate School Pukyong National University)
  • 권성열 (부경대학교 전기공학과) ;
  • 양욱 (부경대학교 대학원 전기공학과) ;
  • 주택원 (부경대학교 대학원 전기공학과)
  • Received : 2013.02.04
  • Accepted : 2013.02.18
  • Published : 2013.03.01

Abstract

DSSCs electrical characteristics and efficiency fabricated with different tape casting thickness Pt counter electrodes and different thickness between $TiO_2$ photo electrode and Pt counter electrode substrate were studied. 1 layer Pt counter electrode shows 3.979% efficiency. Efficiency increased as tape casting thickness decreased. The lowest open-circuit voltage was a 0.726 V and the highest short-circuit current was a 2.188 mA on 1 layer Pt counter electrode. On the different thickness between two substrates, the lowest open-circuit voltage 0.712 V and the highest short-circuit current 2.787 mA was measured at $60{\mu}m$ surlyn film thickness and it shows the highest value of 5.067% efficiency.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, Appl. Surf. Sci., 256, 85 (2009). https://doi.org/10.1016/j.apsusc.2009.07.074
  3. L. M. Peter, Phys. Chem. Chem. Phys., 9, 2630 (2007). https://doi.org/10.1039/b617073k
  4. T. W. Hamann, R. A. Jensen, Alex B. F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energy & Environmental Sci., 1, 66 (2008). https://doi.org/10.1039/b809672d
  5. M. A. Green, K. Emery, D. L. King, S. Igari, W. Warta, Prog. Photovolt.: Res. Appl., 11, 347 (2003). https://doi.org/10.1002/pip.499
  6. S. Dai, K. Wang, J. Weng, Y. Sui, Y. Huang, S. Xiao, S. Chen, L. Hu, F. Kong, Xu. Pan, C. Shi, Li Guo, and S. Dai, Sol. Energy Mater. Solar Cells, 85, 447 (2005). https://doi.org/10.1016/j.solmat.2004.10.001
  7. S. Dai, J. Weng, Y. Sui, C. Shi, Y. Huang, S. Chen, X. Pan, X. Fang, L. Hu, F. Kong, K. Wang, and S. Dai, Sol. Energy Mater. Solar Cells, 84, 125 (2004). https://doi.org/10.1016/j.solmat.2004.03.002
  8. M.Gratzel, J. Photochem.& Photobio.C Photochem. Rev., 4, 145, (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  9. K. Pan, M. Liu, Q. Zhang, J. Li, Y. Liu, Q. Lü, J. Li, D. Wang, Y. Bai, T. Li, and Z. Liu, Thin Solid Films, 484, 346 (2005). https://doi.org/10.1016/j.tsf.2005.02.003
  10. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Electrochem. Commun., 10, 1555 (2008). https://doi.org/10.1016/j.elecom.2008.08.007
  11. T. Yohannes, O. Inganas, Sol. Energy Mater. Solar Cells, 51, 193 (1998). https://doi.org/10.1016/S0927-0248(97)00213-4
  12. Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, Chem. Lett., 1060 (2002).
  13. Y. Shibata, T. Kato, T. Kado, R. Shiratuchi, W. Takashima, K. Kaneto, and S. Hayase, Chem. Commun., 2730 (2003).
  14. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, J. Photochem. Photobiol. A: Chem., 164, 153 (2004). https://doi.org/10.1016/j.jphotochem.2003.11.017
  15. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, Electrochem. Commun., 9, 596 (2007). https://doi.org/10.1016/j.elecom.2006.10.028
  16. E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, Electrochem. Commun., 10, 1087 (2008). https://doi.org/10.1016/j.elecom.2008.05.013
  17. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, and S. Hao, J. Power Sources, 181, 172 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.029
  18. Y. M Han, S. H. Hwang, M. H Kang, Y. J. Kim, H. K. Kim, S. H Kim, H. J. Bae, H. K. Choi, and M. H. Jeon, J. KIEEME, 24, 333 (2011).
  19. H. J. Kim. D. Y. Lee, B. K. Koo, W. J. Lee, J. S. Song, and D. Y. Lee, J. KIEEME, 17, 1090 (2004).
  20. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi Electrochem. Commun., 10, 1555 (2008). https://doi.org/10.1016/j.elecom.2008.08.007
  21. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  22. K. Imotoa, K. Takahashi, T. Yamaguch, T. Komura, J. Nakamura, and K. Murata, Sol. Energy Mater. Sol. Cells, 79, 459 (2003). https://doi.org/10.1016/S0927-0248(03)00021-7
  23. K. S. Hwang and K. R. Ha, Appl. Chem. Eng., 21, 405 (2010).
  24. C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, Electrochim. Acta., 53, 2890 (2008). https://doi.org/10.1016/j.electacta.2007.10.074
  25. P. Li, J. Wu, J. Lin, M. Huang, Z. Lan, and Q. Li, Electrochim. Acta., 53, 4161 (2008). https://doi.org/10.1016/j.electacta.2007.12.073
  26. S. S. Kim, K. W. Park, J. H. Yum, and Y. E. Sung, Sol. Energy Mater. Sol. Cells, 90, 283 (2006). https://doi.org/10.1016/j.solmat.2005.03.015
  27. N. Papageorgiou, W. F. Maier, and M. Gratzel, J. Electrochem. Soc., 144, 876 (1997). https://doi.org/10.1149/1.1837502
  28. K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, Chem. Lett., 32, 28 (2003). https://doi.org/10.1246/cl.2003.28
  29. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, J. Electroanal. Chem., 570, 257 (2004). https://doi.org/10.1016/j.jelechem.2004.04.004
  30. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  31. H. S. Park, S. Y. Kwon, and W. Yang, J. KIEEME, 25, 537 (2012)
  32. Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, C. F. Chi. Electrochem Commun., 12, 1662 (2010). https://doi.org/10.1016/j.elecom.2010.09.022
  33. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, J. Phys. Chem. B., 106, 10004 (2002). https://doi.org/10.1021/jp020051d