DOI QR코드

DOI QR Code

Study on the controlled preparation of polyolefin based block or graft copolymers

폴리올레핀 기반 블록 또는 그라프트 공중합체의 정밀 제조에 대한 고찰

  • Lee, Jong Heon (Department of Nano Science and Technology, Sejong University) ;
  • Hong, Sung Chul (Department of Nano Science and Technology, Sejong University)
  • Received : 2012.12.04
  • Accepted : 2012.12.17
  • Published : 2013.03.31

Abstract

Polyolefin is one of the most important commodity polymers having excellent physical properties and cost competitiveness, which has continuously broadened their market in response to a heavy demand from industry. However, the lack of polarity in polyolefin has limited its applications, especially where interactions with other materials are important. In view of the above, the incorporation of polar functional groups in polyolefin has been widely attempted. Especially, the preparations of segmented modified polyolefin copolymers, such as block and graft copolymers have been extensively investigated, since the loss of the original properties of polyolefin can be minimized while the polar segments can endow interactions with other materials. Living radical polymerization (LRP) method can be one of the most attractive synthetic tools for the preparation of the modified polyolefin block or graft copolymers. In this review, progress on the preparation of the polyolefin based block or graft copolymers through LRP technique is briefly summarized.

폴리올레핀은 광범위한 분야에서 이용되는 범용성 고분자로 물성이 우수하고 가격경쟁력이 높기 때문에 오랜 시간 동안 산업적 요구에 따라 발전하여 왔다. 그러나 폴리올레핀은 비극성 재료로서 다른 물질과의 상호 작용이 부족하기 때문에 그 용도가 제한되고 있다. 따라서 폴리올레핀 사슬에 극성기를 도입함으로써 그 응용 분야를 확장하기 위한 노력이 계속되고 있다. 폴리올레핀에 기능성을 부여하기 위하여 블록 공중합체 및 그라프트 공중합체로 대표되는 분절 공중합체를 합성할 수 있으며, 이러한 공중합체는 폴리올레핀 고유의 물성 손실을 최소화함과 동시에 기능성을 부여할 수 있다는 점에서 주목 받고 있다. 또한 리빙 라디칼 중합법을 이용하면 잘 제어된 구조와 조성을 가지는 공중합체를 제조할 수 있으며, 다양한 중합공정에 적용될 수 있다. 이에 따라, 본 리뷰에서는 리빙 라디칼 중합법을 이용한 폴리올레핀 기반 블록 또는 그라프트 공중합체의 제조 예들에 대하여 정리해 보았다.

Keywords

References

  1. M. A. J. Schellekens, and B. Klumperman, "Synthesis of polyolefin block and graft copolymers", J. Macromol. Sci., Rev. Macromol. Chem. Phys., C40, 167 (2000).
  2. K. W. Doak, In Encyclopedia of Polymer Science and Engineering. H. F. Mark Ed. John Wiley & Sons: New York, 1986; Vol. 6, p 386.
  3. S. D. Ittel, L. K. Johnson, and M. Brookhart, "Late-Metal Catalysts for Ethylene Homo- and Copolymerization", Chem. Rev., 100, 1169 (2000). https://doi.org/10.1021/cr9804644
  4. L. S. Boffa, and B. M. Novak, "Copolymerization of polar monomers with olefins using transition-metal complexes", Chem. Rev., 100, 1479 (2000). https://doi.org/10.1021/cr990251u
  5. H. Yasuda, "Organo Transition Metal Initiated Living Polymerizations", Prog. Polym. Sci., 25, 573 (2000). https://doi.org/10.1016/S0079-6700(00)00013-7
  6. R. G. Lopez, F. D'Agosto, and C. Boisson, "Synthesis of well-defined polymer architectures by successive catalytic olefin polymerization and living/controlled polymerization reactions", Prog. Polym. Sci., 32, 419 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.004
  7. T. C. Chung, "Synthesis of functional polyolefin copolymers with graft and block structures", Prog. Polym. Sci., 27, 39 (2002). https://doi.org/10.1016/S0079-6700(01)00038-7
  8. J. Y. Dong, and Y. Hu, "Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry", Coord. Chem. Rev., 250, 47 (2006). https://doi.org/10.1016/j.ccr.2005.05.008
  9. N. Kawahara, J. Saito, S. Matsuo, H. Kaneko, T. Matsugi, and N. Kashiwa, "Polymer Hybrids Based on Polyolefins- Syntheses, Structures, and Properties", Adv. Polym. Sci., 217, 79 (2008).
  10. C. J. Hawker, A. W. Bosman, and E. Harth, "New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations", Chem. Rev., 101, 3661 (2001). https://doi.org/10.1021/cr990119u
  11. K. Matyjaszewski, and J. Xia, "Atom Transfer Radical Polymerization", Chem. Rev., 101, 2921 (2001). https://doi.org/10.1021/cr940534g
  12. G. Moad, E. Rizzardo, and S. H. Thang, "Living Radical Polymerization by the RAFT Process-A Second Update", Aust. J. Chem, 62, 1402 (2009). https://doi.org/10.1071/CH09311
  13. K. Matyjaszewski, "Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties", Prog. Polym. Sci., 30, 858 (2005). https://doi.org/10.1016/j.progpolymsci.2005.06.004
  14. N. Hadjichristidis, H. Iatrou, M. Pitsikalis, and J. Mays, "Macromolecular architectures by living and controlled/living polymerizations", Prog. Polym. Sci., 31, 1068 (2006). https://doi.org/10.1016/j.progpolymsci.2006.07.002
  15. J. S. Wang, and K. Matyjaszewski, "Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes", J. Am. Chem. Soc., 117, 5614 (1995). https://doi.org/10.1021/ja00125a035
  16. M. Kamigaito, T. Ando, and M. Sawamoto, "Metal-catalyzed living radical polymerization", Chem. Rev., 101, 3689 (2001). https://doi.org/10.1021/cr9901182
  17. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, "Narrow molecular weight resins by a free-radical polymerization process", Macromolecules, 26, 2987 (1993). https://doi.org/10.1021/ma00063a054
  18. T. Wannemacher, D. Braun, and R. Pfaendner, "Novel copolymers via nitroxide mediated controlled free radical polymerization of vinyl chloride", Macromol. Symp., 202, 11 (2003). https://doi.org/10.1002/masy.200351202
  19. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R. T. A. Mayadunne, G.F. Meijs, C.L. Moad, and G. Moad, "Living free-radical polymerization by reversible addition- fragmentation chain transfer: the RAFT process", Macromolecules, 31, 5559 (1998). https://doi.org/10.1021/ma9804951
  20. T. Matsugi, S. I. Kojoh, N. Kawahara, S. Matsuo, H. Kaneko, and N. Kashiwa, "Synthesis and morphology of polyethylene- block-poly(methyl methacrylate) through the combination of metallocene catalysis with living radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 41, 3965 (2003). https://doi.org/10.1002/pola.10991
  21. R. G. Lopez, C. Boisson, F. D'Agosto, R. Spitz, F. Boisson, D. Gigmes, and D. Bertin, "Catalyzed chain growth of polyethylene on magnesium for the synthesis of macroalkoxyamines: Application to the production of block copolymers using controlled radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 45, 2705 (2007). https://doi.org/10.1002/pola.22026
  22. N. Kawahara, S. Kojoh, S. Matsuo, H. Kaneko, T. Matsugi, J. Saito, and N. Kashiwa, "Synthetic method of polyethylene- poly(methylmethacrylate) (PE-PMMA) polymer hybrid via reversible addition-fragmentation chain transfer (RAFT) polymerization with functionalized polyethylene", Polym. Bull., 57, 805 (2006). https://doi.org/10.1007/s00289-006-0642-z
  23. Y. Inoue, T. Matsugi, N. Kashiwa, and K. Matyjaszewski, "Graft copolymers from linear polyethylene via atom transfer radical polymerization", Macromolecules, 37, 3651 (2004). https://doi.org/10.1021/ma0359887
  24. U. M. Stehling, E. E. Malmstrom, R. M. Waymouth, and C. J. Hawker, "Synthesis of poly(olefin) graft copolymers by a combination of metallocene and Properties", Macromolecules, 31, 4396 (1998). https://doi.org/10.1021/ma980141+
  25. S. C. Hong, S. Jia, M. Teodorescu, T. Kowalewski, K. Matyjaszewski, A. C. Gottfried, and M. Brookhart, "Polyolefin graft copolymers via living polymerization techniques: Preparation of poly (n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 40, 2736 (2002).
  26. Y. Inoue, and K. Matyjaszewski, "Preparation of polyethylene block copolymers by a combination of postmetallocene catalysis of ethylene polymerization and atom transfer radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 42, 496 (2003).
  27. D. Sasaki, Y. Suzuki, T. Hagiwara, S. Yano, and T. Sawaguchi, "Synthesis and applications of triblock and multiblock copolymers using telechelic oligopropylene", Polymer, 49, 4094 (2008). https://doi.org/10.1016/j.polymer.2008.07.045
  28. K. Matyjaszewski, J. Saget, J. Pyun, M. Schlögl, and B. Rieger, "Synthesis of polypropylene-poly(meth)acrylate block copolymers using metallocene catalyzed processes and subsequent atom transfer radical polymerization", J. Macromol. Sci. Part A-Pure Appl. Chem., 39, 901 (2002).
  29. H. Kaneko, J. Saito, N. Kawahara, S. Matsuo, T. Matsugi, and N. Kashiwa, "Synthesis and characterization of polypropylene- based block copolymers possessing polar segments via controlled radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 47, 812 (2008).
  30. H. Kaneyoshi, Y. Inoue, and K. Matyjaszewski, "Synthesis of block and graft copolymers with linear polyethylene segments by combination of degenerative transfer coordination polymerization and atom transfer radical polymerization", Macromolecules, 38, 5425 (2005). https://doi.org/10.1021/ma050263j
  31. K. Zhang, Z. Ye, and R. Subramanian, "Synthesis of block copolymers of ethylene with styrene and n-butyl acrylate via a tandem strategy combining ethylene "living" polymerization catalyzed by a functionalized Pd-diimine catalyst with atom transfer radical polymerization", Macromolecules, 41, 640 (2008). https://doi.org/10.1021/ma071874+
  32. R. G. Lopez, C. Boisson, F. D'Agosto, R. Spitz, F. Boisson, D. Bertin, and P. Tordo, "Synthesis and characterization of macroalkoxyamines based on polyethylene", Macromolecules, 37, 3540 (2004). https://doi.org/10.1021/ma049653g
  33. H. D. Brouwer, M. A. J. Schellekens, B. Klumperman, M. J. Monteiro, and A. L. German, "Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition- fragmentation chain-transfer (RAFT) polymerization", J. Polym. Sci., Part A: Polym. Chem., 38, 3596 (2000). https://doi.org/10.1002/1099-0518(20001001)38:19<3596::AID-POLA150>3.0.CO;2-F
  34. C. Cao, J. Zou, J. Y. Dong, Y. Hu, and T. C. Chung, "Synthesis of polypropylene graft copolymers by the combination of a polypropylene copolymer containing pendant vinylbenzene groups and atom transfer radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 43, 429 (2004).
  35. X. Wang, N. Luo, and S. Ying, "Synthesis of EPDM-g-PMMA through atom transfer radical polymerization", Polymer, 40, 4515 (1999). https://doi.org/10.1016/S0032-3861(98)00693-4
  36. A. Sen, and S. Liu, "Synthesis of novel linear polyethene- based graft copolymers by atom transfer radical polymerization", Macromolecules, 34, 1529 (2001). https://doi.org/10.1021/ma001682d
  37. J. M. Hwu, M. J. Chang, J. C. Lin, H. Y. Cheng, and G. J. Jiang, "Synthesis and application of functional polyethylene graft copolymers by atom transfer radical polymerization", J. Organomet. Chem, 690, 6300 (2005). https://doi.org/10.1016/j.jorganchem.2005.04.043
  38. H. Kaneko, J. Saito, N. Kawahara, S. Matsuo, T. Matsugi, and N. Kashiwa, "Synthesis and characterization of polypropylene- based polymer hybrids linking poly(methyl methacrylate) and poly(2-hydroxyethyl methacrylate)", Polymer, 49, 4576 (2008). https://doi.org/10.1016/j.polymer.2008.08.032
  39. K. Yamamoto, Y. Miwa, H. Tanaka, M. Sakaguchi, and S. Shimada, "Living radical graft polymerization of methyl methacrylate to polyethylene film with typical and reverse atom transfer radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 40, 3350 (2002). https://doi.org/10.1002/pola.10435
  40. K. Yamamoto, H. Tanaka, M. Sakaguchi, and S. Shimada, "Well-defined poly(methyl methacrylate) grafted to polyethylene with reverse atom transfer radical polymerization initiated by peroxides", Polymer, 44, 7661 (2003). https://doi.org/10.1016/j.polymer.2003.10.006
  41. S. M. Desai, S. S. Solanky, A .B. Mandale, K. Rathore, and R. P. Singh, "Controlled grafting of N-isoproply acrylamide brushes onto self-standing isotactic polypropylene thin films: surface initiated atom transfer radical polymerization", Polymer, 44, 7645 (2003). https://doi.org/10.1016/j.polymer.2003.09.060
  42. K. Zhang, J. Wang, R. Subramanian, Z. Ye, J. Lu, and Q. Yu, "Chain Walking Ethylene Copolymerization with an ATRP Inimer for One-Pot Synthesis of Hyperbranched Polyethylenes Tethered with ATRP Initiating Sites", Macromol. Rapid Commun., 28, 2185 (2007). https://doi.org/10.1002/marc.200700443
  43. S. C. Hong, T. Pakula, and K. Matyjaszewski, "Preparation of Polyisobutene-graft-Poly(methyl methacrylate) and Polyisobutene-graft-Polystyrene with Different Compositions and Side Chain Architectures through Atom Transfer Radical Polymerization (ATRP)", Macromol. Chem. Phys., 202, 3392 (2001). https://doi.org/10.1002/1521-3935(20011101)202:17<3392::AID-MACP3392>3.0.CO;2-4
  44. T. Fonagy, B. Ivan, and M. Szesztay, "Polyisobutylenegraft- polystyrene by quasiliving atom transfer radical polymerization of styrene from poly (isobutylene-co-p-methylstyrene- co-p-bromomethylstyrene)", Macromol. Rapid Commun., 19, 479 (1998). https://doi.org/10.1002/(SICI)1521-3927(19980901)19:9<479::AID-MARC479>3.0.CO;2-9
  45. V. Percec, and B. Barboiu, ""Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl", Macromolecules, 28, 7970 (1995). https://doi.org/10.1021/ma00127a057
  46. K. Matyjaszewski, "Improvements in Atom or Group Transfer Radical Polymerization", WO Patent 98/40415, 1998.
  47. M. Baumert, J. Heinemann, R. Thomann, and R. Mülhaupt, "Highly branched polyethylene graft copolymers prepared by means of migratory insertion polymerization combined with TEMPO-mediated controlled radical polymerization", Macromol. Rapid Commun., 21, 271 (2000). https://doi.org/10.1002/(SICI)1521-3927(20000301)21:6<271::AID-MARC271>3.0.CO;2-N
  48. N. B. Bowden, M. Dankova, W. Wiyatno, C.J. Hawker, and R. M. Waymouth, "Synthesis of polyethylene graft block copolymers from styrene, butyl acrylate, and butadiene", Macromolecules, 35, 9246 (2002). https://doi.org/10.1021/ma020544g
  49. Y. Miwa, K. Yamamoto, M. Sakaguchi, and S. Shimada, "Living radical graft polymerization of styrene to polypropylene with 2,2,6,6-tetramethylpiperidinyl-1-oxy", Macromolecules, 32, 8234 (1999). https://doi.org/10.1021/ma990998m
  50. Y. Miwa, K. Yamamoto, M. Sakaguchi, and S. Shimada, "Well-defined polystyrene grafted to polypropylene backbone by "living" radical polymerization with TEMPO", Macromolecules, 34, 2089 (2001). https://doi.org/10.1021/ma001449f
  51. E. S. Park, H. J. Jin, I. M. Lee, M. N. Kim, H. S. Lee, and J. S. Yoon, "Grafting of polystyrene branches to polyethylene and polypropylene", J. Appl. Polym. Sci., 83, 1103 (2001).
  52. M. Roth, R. Pfaendner, and P. Nesvadba, "Grafting of ethylenically unsaturated monomers onto polymers", U.S. patent 6525151, 2000.
  53. J. Bonilla-Cruz, E. Saldivar-Guerra, J. R. Torres-Lubian, R. Guerrero-Santos, B. Lopez-Carpy, and G. Luna-Barcenas, "Controlled Grafting-From of Polystyrene on Polybutadiene: Mechanism and Spectroscopic Evidence of the Functionalization of Polybutadiene with 4-Oxo-TEMPO", Macromol. Chem. Phys., 209, 2268 (2008). https://doi.org/10.1002/macp.200800367
  54. M. Abbasian, H. Namazi, and A. A. Entezami, ""Living" radical graft polymerization of styrene to styrene butadiene rubber (SBR) with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)", Polym. Adv. Technol., 15, 606 (2004). https://doi.org/10.1002/pat.515
  55. L. Barner, N. Zwaneveld, S. Perera, Y. Pham, and T.P. Davis, "Reversible addition-fragmentation chain-transfer graft polymerization of styrene: Solid phases for organic and peptide synthesis", J. Polym. Sci., Part A: Polym. Chem., 40, 4180 (2002). https://doi.org/10.1002/pola.10513