DOI QR코드

DOI QR Code

Evaluation of Two Robot Vision Control Algorithms Developed Based on N-R and EKF Methods for Slender Bar Placement

얇은막대 배치작업에 대한 N-R 과 EKF 방법을 이용하여 개발한 로봇 비젼 제어알고리즘의 평가

  • 손재경 (조선대학교 기계공학과) ;
  • 장완식 (조선대학교 기계공학과) ;
  • 홍성문 (조선대학교 기계공학과)
  • Received : 2012.07.11
  • Accepted : 2013.01.02
  • Published : 2013.04.01

Abstract

Many problems need to be solved before vision systems can actually be applied in industry, such as the precision of the kinematics model of the robot control algorithm based on visual information, active compensation of the camera's focal length and orientation during the movement of the robot, and understanding the mapping of the physical 3-D space into 2-D camera coordinates. An algorithm is proposed to enable robot to move actively even if the relative positions between the camera and the robot is unknown. To solve the correction problem, this study proposes vision system model with six camera parameters. To develop the robot vision control algorithm, the N-R and EKF methods are applied to the vision system model. Finally, the position accuracy and processing time of the two algorithms developed based based on the EKF and the N-R methods are compared experimentally by making the robot perform slender bar placement task.

실제 산업현장에서 비젼 시스템을 적용하기에는 로봇 비젼 제어알고리즘의 기구학모델의 정확도, 로봇이 움직이는 동안 카메라 초점거리와 방위에 대한 보정, 3 차원 물리적 좌표에서 2 차원 카메라 좌표로의 매핑에 대한 이해 등 해결해야 할 많은 문제점들이 있다. 본 논문에 제안된 비젼 시스템 모델은 카메라와 로봇 사이의 상대적인 위치가 알려지지 않아도 제어가 가능하고, 카메라 보정 문제를 해결하기 위해 6 개의 카메라 매개변수를 가지는 비젼 시스템 모델을 제시하였으며, 이를 이용하여 로봇 비젼 제어알고리즘 개발에 N-R 방법과 EKF 방법을 적용하였다. 최종적으로 N-R 과 EKF 방법에 의하여 개발된 로봇 비젼 제어 알고리즘의 위치 정밀도와 데이터 처리 시간을 얇은 막대 배치작업을 수행하여 비교하였다.

Keywords

References

  1. John, J. C., 1989, Introduction to Robotics Mechanics and Control, 2nd ed., U.S.A: Addison-Wesley, pp. 84.
  2. Junkins , J. L., 1978, An Introduction to Optimal Estimation of Dynamical Systems, Sijthoff and Noordhoff, Alphen Aan Den Rijn, pp. 29-33.
  3. David, F., Robert, P. and Roger, P., 1978 Statistic, Canada: W.W.Norton, pp.58-59.
  4. Newman, M. E. J. and Barkema, G. T., 1999, "Monte Carlo Methods in Statistical Physics," New York, Oxford, PP. 210-259.
  5. Papp, T., 1996, "Integrated Robot Control System with a Cision Module Using Two Cameras," Proceeding of 5th International Workshop on Robotics in Alpe-Adria-Danube Region, pp.137-139.
  6. Tsai, R.Y., 1989, "Synopsis of Recent Progress on Camera Calibration for 3D Machine Vision," The Robotics Review, Cambridge: MIT Press., pp.146-159.
  7. Huang, C. H., Hsu, C. S., Tsai, P. C., Wang, R. J. and Wang, W. J., 2011, "Vision Based 3-D Position Control for a robot arm" ICSMC, pp. 1699-1703.
  8. Skaar, S. B., Brockman, W. H. and Jang, W. S., 1990, "Three-Dimensional Camera Space Manipulation," International Journal of Robotics Research, Vol. 9, Issue 4, Aug.
  9. Yoon, S. J., Han, W. S., Min, S. K. and Roh, K. S., 2007, "Global Localization of Mobile Robots Using Omni-Directional Images," Trans. Korean Soc. Mech. Eng. A, Vol. 31, No. 4, pp. 517-524. https://doi.org/10.3795/KSME-A.2007.31.4.517
  10. Yang, C., Huang, Q., Ogbobe,. P. O. and Han, J., 2009, "Forward Kinematics Analysis of Parallel Robots Using Global Newton-Raphson Method", Proceedings of 2009 Second ICICTA, pp.407-410.
  11. Durmus, B, Temurtas, H., Yumusak, N., Temurtas, F. and Kazan, R., 2008, "The Cost Function Minimization for Predictive Control by Newton-Raphson Method," Proceeding of the International MultiConference of Engineers and Computer Scientist, pp. 19-21.
  12. Kalman, R. E, 1960, "A New Approach to Linear Filtering and Prediction Problems," J. basic Rng. Trans. ASEM. Vol.82D, pp. 35-45.
  13. Kalman, R. E, 1963, "New Method in Wiener Filtering Theory," Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability, J. L. Bogdanoff & F. Kosin. Eds., New York, Wiley.
  14. Shademan, A. and Janabi-Sharifi, F., 2005, "Sensitivity Analysis of EKF and Iterated EKF Pose Estimation for Position-Based Visual Servoing," IEEE Conference on Control Applications Toronto, Canada, August 28-31, pp. 755-760.
  15. Kerr, H. T., 1991, "Streamlining Measurement Iteration for EKF Target Tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 27, No. 2 , pp. 408-421. https://doi.org/10.1109/7.78314
  16. Firouzi, H. and Najjaran, H., "Real-Time Monocular Vision-Based Object Tracking with Object Distance and Motion Estimation," IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 987-992.
  17. Son, J. K., 2010, An Experimental Study on the Practicality of Vision Control Scheme Used for Robot's Point Placement Task in Discontinuous Trajectory, A Thesis for Master's Degree, Chosun University, Republic of Korea.
  18. Son, J. K., Jang, W. S. and Hong, S. M., 2012, "Development of Robot Vision Control Scheme Based on Newton-Raphson Algorithm for the Fixed Slender Bar Target," KSME Spring Conference, pp. 95-96.
  19. Son, J. K., Jang, W. S. and Hong, S. M., 2012, "Development of Robot Vision Control Scheme Based on Extended Kalman Filtering Algorithm for the Fixed Slender Bar Target," KSME Spring Conference, pp. 89-90.
  20. Jang, W. S., Kim, K. S., Kim, K. Y. and Ahn, H. C., 2004, "An Experimental Study on the Optimal number of Cameras used for Vision Control System," KSMTE, Vol. 13, No. 2, pp. 94-103.
  21. Min, K. U. and Jang, W. S., 2010, "An Experimental Study on the Optimal Arrangement of Cameras used for the Robot's Vision Control Scheme," KSMTE, Vol. 19, No. 1, pp. 15-25.

Cited by

  1. A Study on the Development of a Robot Vision Control Scheme Based on the Newton-Raphson Method for the Uncertainty of Circumstance vol.40, pp.3, 2016, https://doi.org/10.3795/KSME-A.2016.40.3.305
  2. Development of Robot Vision Control Schemes based on Batch Method for Tracking of Moving Rigid Body Target vol.17, pp.5, 2018, https://doi.org/10.14775/ksmpe.2018.17.5.161