DOI QR코드

DOI QR Code

종류가 다른 부직포가 삽입된 하이브리드 복합재료의 층간파괴인성 : Part I-Mode I

Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Kinds of Non-Woven Tissues : Part I-Mode I

  • 정종설 (서울과학기술대학교 NID 융합기술대학원) ;
  • 정성균 (서울과학기술대학교 기계.자동차공학과)
  • Jeong, Jong-Seol (Graduate School of NID Fusion Technology, Seoul Nat'l Univ. of Science and Technology) ;
  • Cheong, Seong-Kyun (Dept. of Mechanical and Automotive Engineering, Seoul Nat'l Univ. of Science and Technology)
  • 투고 : 2012.09.03
  • 심사 : 2012.12.24
  • 발행 : 2013.04.01

초록

본 논문에서는 종류가 다른 부직포가 삽입된 하이브리드 복합재료의 Mode I 층간파괴인성에 관한 연구를 수행하였다. Mode I 층간파괴인성값($J/m^2$)은 DCB실험에 의하여 얻어졌으며, 부직포를 삽입하지 않은 시편과 3종류의 부직포(8 $g/m^2$의 탄소부직포, 10 $g/m^2$의 유리부직포, 8 $g/m^2$의 폴리에스테르부직포)가 각각 삽입된 시험편에 대하여 실험을 수행하였다. 각 시험편들에 대한 Mode I 층간파괴인성값은 부직포를 삽입하지 않은 시편을 기준으로 탄소부직포를 삽입한 시편은 6.3% 감소하였고, 유리부직포를 삽입한 시편은 약 11.4% 감소한 반면 폴리에스테르부직포를 삽입한 시편은 약 69.4% 증가하였다. 폴리에스테르부직포는 탄소부직포에 비해 저렴하며 가볍고, Mode I 층간파괴인성값을 크게 증가시킴을 알 수 있었다.

In this study, the interlaminar fracture toughness in mode I of a hybrid composite inserted with different types of non-woven tissues was determined. The interlaminar fracture toughness in mode I is obtained by a double cantilever beam test. The experiment is performed using three types of non-woven tissues: 8 $g/m^2$ of carbon tissue, 10 $g/m^2$ of glass tissue, and 8 $g/m^2$ of polyester tissue. Considering a specimen with no non-woven tissue as a reference, the interlaminar fracture toughness in mode I of specimens inserted with non-woven carbon and glass tissues decreases by as much as 6.3% and 11.4%, respectively. However, the fracture toughness of a hybrid composite specimen inserted with non-woven polyester tissue increases by as much as 69.4%. It is considered that the specimen inserted with non-woven polyester tissue becomes cheaper, and lighter, and the value of the fracture toughness becomes much greater than that of the non-woven carbon tissue.

키워드

참고문헌

  1. Lee, K. Y. and Kwon, S. M., 1991, "Interlaminar Fracture Toughness for Composite Materials," Trans. Korean Soc. Mech. Eng., Vol. 15, No. 5, pp. 1486-1494.
  2. Yoon, S.-H. and Hong, C.-S., 1989, "Beam-Type specimen for Interminar Fracture Toughness of Laminate Composite Under Mixed Mode Deformations," Trans. Korean Soc. Mech. Eng., Vol. 13, No. 5, pp. 921-927.
  3. Hu, W., Han, I., Park, S.-C. and Choi, D.-H., 2012, "Multi-Objective Structural Optimization of a HAWT Composite Blade Based on Ultimate Limit State Analysis," Journal of Mechanical Science and Technology, Vol. 26, No. 1, pp. 129-135. https://doi.org/10.1007/s12206-011-1018-3
  4. Kim, J. K., Baillie, C., Poh, J. and Mai, Y. W., 1992, "Fracture Toughness of CFRP with Modified Epoxy Resin Materials," Composites Science Technology, Vol. 43, pp. 283-297. https://doi.org/10.1016/0266-3538(92)90099-O
  5. Odagiri, N., Kishi, H. and Yamashita, M., 1996, "Development of Torayca Prepreg P2302 Carbon Fiber Reinforced Plastic for Aircraft Primary Structural Materials," Advanced Composite Materials(in Japan), Vol. 5, pp. 249-252. https://doi.org/10.1163/156855196X00301
  6. Ozdil, F. and Carlsson, L. A., 1992, "Mode I Interlaminar Fracture of Interleaved Graphite/Epoxy," Journal of Material Science, Vol. 26, pp. 432-459.
  7. Ishai, O., Rosenthal, H., Sela, N. and Drukker, E., 1988, "Effect of Selective Adhesive Interleaving on Interlaminar Fracture Toughness of Graphite/Epoxy Composite Laminates," Composite(A), Vol. 19, pp. 49-54. https://doi.org/10.1016/0010-4361(88)90543-5
  8. Yamashita, S., Hatta, H., Takei, T. and Sugano, T., 1992, "Interlaminar Reinforcement of Laminated Composites by Addition of Orientated Whiskers in the Matrix," Journal of Composite Materials, Vol. 26, pp. 1254-1268. https://doi.org/10.1177/002199839202600902
  9. Mouritz, A. P., 2007, "Review of Z-pinned Composite Laminates," Composite: Part A, Vol. 38, pp. 2383-2397. https://doi.org/10.1016/j.compositesa.2007.08.016
  10. Choi, I. H., Ahn, S. M., Yeom, C. H., Hwang, I. H. and Lee, D. S., 2009, "Impact Resistance of Composite Laminates Manufactured by New z-Pinning Technique," The Korean Society for Aeronautical and Space Science, Vol. 37, pp. 693-700. https://doi.org/10.5139/JKSAS.2009.37.7.693
  11. Lee, B. H., Park. Y. B., Kweon, J. H., Choi, J. H., Choi, I. H. and Chang, S. T., 2012, "Strength of Stainless Steel Pin-reinforced Composite Single-lap Joints," The Korean Society for Composite Materials, Vol. 25, pp. 65-69. https://doi.org/10.7234/kscm.2012.25.3.065
  12. Lee, S. H., Noguchi, H., Kim, Y. B. and Cheong, S. K., 2002, "Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part I-Mode II," Journal of Composite Materials, Vol. 36, pp. 2153-2168. https://doi.org/10.1177/0021998302036018981
  13. Lee, S. H., Noguchi, H., Kim, Y. B. and Cheong, S. K., 2002, "Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part II-Mode I," Journal of Composite Materials, Vol. 36, pp. 2169-2181. https://doi.org/10.1177/0021998302036018980
  14. Lee, S. H., Noguchi, H. and Cheong, S. K., 2003, "Static Behavior Characteristics of Hybrid Composites with Non-Woven Carbon Tissue," Journal of Composite Materials, Vol. 37, pp. 233-252. https://doi.org/10.1177/0021998303037003424
  15. Lee, S. H., Noguchi, H. and Cheong, S. K., 2003, "Fatigue Behavior Characteristics of Hybrid Composites with Non-Woven Carbon Tissue," Journal of Composite Materials, Vol. 37, pp. 253-268. https://doi.org/10.1177/0021998303037003992
  16. Lee, S. H., Aono, Y., Noguchi, H. and Cheong, S. K., 2003, "Damage Mechanism of Hybrid Composites with Non-Woven Carbon Tissue Subjected to Quasi-Static Indentation Loads," Journal of Composite Materials, Vol. 37. pp. 333-349. https://doi.org/10.1177/0021998303037004334
  17. Lee, S. H., Aono, Y., Noguchi, H. and Cheong, S. K., 2004, "Residual Compressive Failure Characteristics of Hybrid Composites with Non-Woven Carbon Tissue after Indentation Damage," Journal of Composite Materials, Vol. 38, pp. 1461-1477. https://doi.org/10.1177/0021998304043744
  18. Lee, S. H., Lee, J. H., Cheong, S. K. and Noguchi, H., 2008, "A Toughening and Strengthening Technique of Hybrid Composites with Non-Woven Tissue," Journal of Materials Processing Technology, Vol. 207, pp. 21-29. https://doi.org/10.1016/j.jmatprotec.2007.12.047
  19. Cheong, S. K., 2001, "Effects of Non-woven Tissue on the Mechanical Behavior of Angle-ply Laminates," Transactions of the Korean Society of Machine Tool Engineers, Vol. 10, pp. 109-115
  20. Jeong, J. S., Lee, S. H. and Cheong, S. K., 2010, "Interlaminar Fracture Toughness of CFRP Composite Laminates With Carbon Non-Woven Tissue Under High and Low Temperature," The Korean Society for Composite Materials, pp. 222-225.
  21. Cheong, S. K., 2009, "Interlaminar Fracture Toughness of CFRP Laminates With Carbon Non-Woven Tissue Having Different Weight," The Korean Society for Composite Materials, pp. 43-48.
  22. ASTM D5528-01, 2007, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.