DOI QR코드

DOI QR Code

Mechanical Behavior of New Thin Sandwich Panel Subjected to Bending

새로운 박판샌드위치 판재의 삼점굽힘거동

  • Lee, Jung-In (School of Mechanical Engineering, Chonnam Nat'l Univ.) ;
  • Kang, Ki-Ju (School of Mechanical Engineering, Chonnam Nat'l Univ.)
  • 이정인 (전남대학교 기계공학부) ;
  • 강기주 (전남대학교 기계공학부)
  • Received : 2012.09.28
  • Accepted : 2012.12.10
  • Published : 2013.04.01

Abstract

A new thin sandwich panel composed of an aluminum expanded metal core adhesively jointed with stainless steel face sheets is introduced, and its mechanical behavior under three-point bending is investigated. The strength and stiffness are analyzed theoretically, and the press-formability and strength enhancement are evaluated experimentally. The specimens with the specific configurations exhibit face yielding well before face-core separation, which means that the sandwich panel can be formed by a press without failure. The measured load levels corresponding to the face yielding and the face-core separation agree fairly well with the theoretical estimations. For a given weight, the sandwich panel is superior to a solid panel in terms of strength, stiffness, and press-formability.

알루미늄 확장 금속망 심재와 스테인리스강 면재를 에폭시 수지로 접합하여 제조되는 새로운 박판샌드위치 판재의 제조방법을 제시하고 이의 굽힘 거동을 조사하였다. 강도 및 강성도에 대한 이론해를 제시하고 실험을 통하여 프레스 성형성과 굽힘강도 증대효과 등을 평가하였다. 제시된 제조방법과 재료조합에서 삼점굽힘 하중 작용 시 면재-심재 접착부 분리 현상보다 면재의 항복이 훨씬 조기에 발생하여 본 샌드위치 판재의 우수성을 확인하였다. 샌드위치 판재의 강성도 및 면재 항복이 발생하는 하중과 접착부 분리 하중 등에 대하여 유도된 이론식이 실험 결과와 비교적 잘 일치하였다. 동일한 무게를 갖는 균질 판재와 비교하여 강도와 강성도면에서 월등하고 프레스 성형성도 우수할 것으로 평가되었다.

Keywords

References

  1. Clyne, T.W. and Markaki, A.E., 2004, "Ultra Light Stainless Steel Sheet Material," US Patent 6764772, 20 July.
  2. Markaki, A.E., Westgate, S.A. and Clyne, T.W., 2002, in: Ghosh, T.S., Sanders, T.D., Clark, A.K. (Eds.), Proceedings of 3rd Global Symposium on Materials Processing and Manufacturing, TMS Meeting, Seattle, WA, p. 15.
  3. Markaki, A.E. and Clyne, T.W., 2003, "Mechanics of Thin Ultra-Light Stainless Steel Sandwich Sheet Material: Part I. Stiffness," Acta Materialia, Vol. 51, pp.1341-1350. https://doi.org/10.1016/S1359-6454(02)00528-1
  4. Markaki, A.E. and Clyne, T.W., 2003, "Mechanics of Thin Ultra-Light Stainless Steel Sandwich Sheet Material: Part II. Resistance to Delamination," Acta Materialia, Vol. 51, pp.1341-1357. https://doi.org/10.1016/S1359-6454(02)00528-1
  5. Lesourd, H., 1988, "Sandwich-Type Stampable, Metallic Structure, US Patent 4759994, 26 July.
  6. http://www.isf.rwth-aachen.de/index.php?id=39&L=1
  7. El-Magd, E., Gebhard, J. and Stuhrmann, J., 2007, "Simulation of the Creep Behaviour of P92 Sandwich structures at $650^{\circ}C$ with Loading Transverse to the Intermediate Layer," Computational Materials Science, Vol. 39, pp.446-452. https://doi.org/10.1016/j.commatsci.2006.07.011
  8. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchison, J.W. and Wadley, H.N.G., 2000, Metal Foams: a Design Guide. Butterworth Heinemann, Boston.
  9. Wicks, N. and Hutchinson, J.W., 2001, "Optimal Truss Plates," International Journal of Solids and Structures, Vol. 38, pp.5165-5183. https://doi.org/10.1016/S0020-7683(00)00315-2
  10. Lardner, T.J. and Archer, R.R., 1994, Mechanics of Solids: An Introduction, McGraw-Hill, New York, p. 334.
  11. Crandal, S.H., Dahl, N.C. and Lardner, T.J., 1972, An Introduction to the Mechanics of Solids, 2nd Ed., McGraw-Hill, Tokyo, p. 452.