DOI QR코드

DOI QR Code

PURE INJECTIVE REPRESENTATIONS OF QUIVERS

  • Received : 2010.12.14
  • Published : 2013.03.31

Abstract

Let R be a ring and $\mathcal{Q}$ be a quiver. In this paper we give another definition of purity in the category of quiver representations. Under such definition we prove that the class of all pure injective representations of $\mathcal{Q}$ by R-modules is preenveloping. In case $\mathcal{Q}$ is a left rooted semi-co-barren quiver and R is left Noetherian, we show that every cotorsion flat representation of $\mathcal{Q}$ is pure injective. If, furthermore, R is $n$-perfect and $\mathcal{F}$ is a flat representation $\mathcal{Q}$, then the pure injective dimension of $\mathcal{F}$ is at most $n$.

Keywords

References

  1. E. Enochs and S. Estrada, Projective representations of quivers, Comm. Algebra 33 (2005), no. 10, 3467-3478. https://doi.org/10.1081/AGB-200058181
  2. E. Enochs, S. Estrada, and J. R. Garcia Rozas, Injective representations of infinite quivers. Applications, Canad. J. Math. 61 (2009), no. 2, 315-335. https://doi.org/10.4153/CJM-2009-016-2
  3. E. Enochs, S. Estrada, J. Garcia Rozas, and L. Oyonarte, Flat covers of representations of the quiver $A_{\infty}$, Int. J. Math. Math. Sci. 2003 (2003), no. 70, 4409-4419. https://doi.org/10.1155/S0161171203205391
  4. E. Enochs, S. Estrada, and S. Ozdemir, Transfinite tree quivers and their representations, arXiv:1201.2294v1 [math.RA], (2012).
  5. E. Enochs, J. R. Garcia Rozas, L. Oyonarte, and S. Park, Noetherian quivers, Quaest. Math. 25 (2002), no. 4, 531-538. https://doi.org/10.2989/16073600209486037
  6. E. Enochs and O. Jenda, Relative Homological Algebra, Gordon and Breach S. Publishers, 2000.
  7. E. Enochs, O. Jenda, and J. A. Lopez-Ramos, Dualizing modules and n-perfect rings, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 1, 75-90. https://doi.org/10.1017/S0013091503001056
  8. E. Enochs, L. Oyonarte, and B. Torrecillas, Flat covers and flat representations of quivers, Comm. Algebra 32 (2004), no. 4, 1319-1338. https://doi.org/10.1081/AGB-120028784
  9. I. Herzog, Pure-injective envelope, J. Algebra Appl. 2 (2003), no. 4, 397-402. https://doi.org/10.1142/S0219498803000581
  10. C. U. Jensen and H. Lenzing, Model Theoretic Algebra, Gordon and Breach S. Publishers, 1989.
  11. L. Oyonarte, Cotorsion representations of quivers, Comm. Algebra 29 (2001), no. 12, 5563-5574. https://doi.org/10.1081/AGB-100107946
  12. J. Xu, Flat Covers of Modules, Lecture Notes in Mathematics, Springer-Verlag, 1634, 1996.
  13. R.Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.

Cited by

  1. ABSOLUTELY PURE REPRESENTATIONS OF QUIVERS vol.51, pp.6, 2014, https://doi.org/10.4134/JKMS.2014.51.6.1177