DOI QR코드

DOI QR Code

THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS

  • Kim, Eui Chul (Department of Mathematics College of Education Andong National University)
  • Received : 2011.09.19
  • Published : 2013.03.31

Abstract

Let ($M^3$, $g$) be a 3-dimensional closed Sasakian spin manifold. Let $S_{min}$ denote the minimum of the scalar curvature of ($M^3$, $g$). Let ${\lambda}^+_1$ > 0 be the first positive eigenvalue of the Dirac operator of ($M^3$, $g$). We proved in [13] that if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$, then ${\lambda}^+_1$ satisfies ${\lambda}^+_1{\geq}{\frac{S_{min}+6}{8}}$. In this paper, we remove the restriction "if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$" and prove $${\lambda}^+_1{\geq}\;\{\frac{S_{min}+6}{8}\;for\;-\frac{3}{2}<S_{min}{\leq}30, \\{\frac{1+\sqrt{2S_{min}}+4}{2}}\;for\;S_{min}{\geq}30$$.

Keywords

Acknowledgement

Supported by : Andong National University

References

  1. I. Agricola, The Srni lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), 5-84.
  2. M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69. https://doi.org/10.1017/S0305004100049410
  3. F. A. Belgun, Normal CR structure on compact 3-manifolds, Math. Z. 238 (2001), no. 3, 441-460. https://doi.org/10.1007/s002090100260
  4. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston/Basel/Berlin, 2002.
  5. Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrummung, Math. Nachr. 97 (1980), 117-146. https://doi.org/10.1002/mana.19800970111
  6. Th. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, AMS, Providence, RI, 2000.
  7. Th. Friedrich, The second Dirac eigenvalue of a nearly parallel $G_{2}$-manifold, Adv. Appl. Clifford Algebr. 22 (2012), no. 2, 301-311. https://doi.org/10.1007/s00006-011-0301-9
  8. Th. Friedrich and E. C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1-2, 128-172. https://doi.org/10.1016/S0393-0440(99)00043-1
  9. N. Ginoux, The Dirac Spectrum, Lecture Notes in Mathematics, Springer-Verlag, Berlin/Heidelberg, 2009.
  10. O. Hijazi, Eigenvalues of the Dirac operator on compact Kahler manifolds, Comm. Math. Phys. 160 (1994), no. 3, 563-579. https://doi.org/10.1007/BF02173430
  11. E. C. Kim, The A-genus and symmetry of the Dirac spectrum on Riemannian product manifolds, Differential Geom. Appl. 25 (2007), no. 3, 309-321. https://doi.org/10.1016/j.difgeo.2006.11.009
  12. E. C. Kim, Dirac eigenvalues estimates in terms of divergencefree symmetric tensors, Bull. Korean Math. Soc. 46 (2009), no. 5, 949-966. https://doi.org/10.4134/BKMS.2009.46.5.949
  13. E. C. Kim, Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds, Differential Geom. Appl. 28 (2010), no. 6, 648-655. https://doi.org/10.1016/j.difgeo.2010.07.001
  14. S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29-45. https://doi.org/10.2748/tmj/1178245006
  15. A. Moroianu, Operateur de Dirac et submersions riemanniennes, Thesis, Ecole Polytechnique, 1996.

Cited by

  1. Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds vol.45, pp.1, 2014, https://doi.org/10.1007/s10455-013-9388-7