DOI QR코드

DOI QR Code

LOCALIZATION OF INJECTIVE MODULES OVER ω-NOETHERIAN RINGS

  • Kim, Hwankoo (Department of Information Security Hoseo University) ;
  • Wang, Fanggui (Institute of Mathematics and Software Science Sichuan Normal University)
  • Received : 2011.10.23
  • Published : 2013.03.31

Abstract

We give some characterizations of injective modules over ${\omega}$-Noetherian rings. It is also shown that each localization of a GV-torsion-free injective module over a ${\omega}$-Noetherian ring is injective.

Acknowledgement

Supported by : Hoseo University

References

  1. F. Couchot, Localization of injective modules over valuations rings, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1013-1017. https://doi.org/10.1090/S0002-9939-05-08350-4
  2. F. Couchot, Localization of injective modules over arithmetical rings, Comm. Algebra 37 (2009), no. 10, 3418-3423. https://doi.org/10.1080/00927870802502860
  3. E. C. Dade, Localization of injective modules, J. Algebra 69 (1981), no. 2, 416-425. https://doi.org/10.1016/0021-8693(81)90213-1
  4. L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs 84, AMS, Providence, RI, 2001.
  5. R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics 90, Queen's University, Kingston, Ontario, 1992.
  6. B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), no. 2, 284-299. https://doi.org/10.1016/0021-8693(89)90131-2
  7. H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra 36 (2008), no. 5, 1649-1670. https://doi.org/10.1080/00927870701872513
  8. H. Kim, E. S. Kim, and Y. S. Park, Injective modules over strong Mori domains, Houston J. Math. 34 (2008), no. 2, 349-360.
  9. E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), no. 3, 511-528. https://doi.org/10.2140/pjm.1958.8.511
  10. J. J. Rotman, An Introduction to Homological Algebra, 2nd ed., Springer, New York, 2009.
  11. B. Stenstrom, Direct sum decompositions in Grothendiek categories, Ark. Mat. 7 (1968), no. 5, 427-432. https://doi.org/10.1007/BF02590990
  12. F.Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), no. 1, 1-9.
  13. F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. https://doi.org/10.1080/00927879708825920
  14. F. Wang and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
  15. F. Wang and J. Zhang, Injectve modules over w-Noetherian rings, Acta Math. Sinica (Chin. Ser.) 53 (2010), no. 6, 1119-1130.
  16. H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207

Cited by

  1. Divisible Is Injective over Krull Domains vol.44, pp.10, 2016, https://doi.org/10.1080/00927872.2015.1087544