DOI QR코드

DOI QR Code

SOLVABILITY AND BOUNDEDNESS FOR GENERAL VARIATIONAL INEQUALITY PROBLEMS

  • Luo, Gui-Mei (Department of Applied Mathematics Guangdong University of Finance)
  • Received : 2011.12.02
  • Published : 2013.03.31

Abstract

In this paper, we propose a sufficient condition for the existence of solutions to general variational inequality problems (GVI(K, F, $g$)). The condition is also necessary when F is a $g-P^M_*$ function. We also investigate the boundedness of the solution set of (GVI(K, F, $g$)). Furthermore, we show that when F is norm-coercive, the general complementarity problems (GCP(K, F, $g$)) has a nonempty compact solution set. Finally, we establish some existence theorems for (GNCP(K, F, $g$)).

Keywords

Acknowledgement

Supported by : NSF of China

References

  1. G. Y. Chen, C. J. Goh, and X. Q. Yang, On gap functions and duality of variational inequality problems, J. Math. Anal. Appl. 214 (1997), no. 2, 658-673. https://doi.org/10.1006/jmaa.1997.5608
  2. F. Facchinei, A. Fischer, and V. Piccialli, On generalized Nash games and variational inequalities, Oper. Res. Lett 35 (2007), no. 2, 159-164. https://doi.org/10.1016/j.orl.2006.03.004
  3. F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. I and II, Springer-Verlag, New York, 2003.
  4. M. Fakhar and J. Zafarani, On generalized variational inequalities, J. Global Optim. 43 (2009), no. 4, 503-511. https://doi.org/10.1007/s10898-008-9346-2
  5. J. Han, Z. H. Huang, and S. C. Fang, Solvability of variational inequality problems, J. Optim. Theory Appl. 122 (2004), no. 3, 501-520. https://doi.org/10.1023/B:JOTA.0000042593.74934.b7
  6. P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Programming 48 (1990), no. 2, (Ser. B), 161-220. https://doi.org/10.1007/BF01582255
  7. B. S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim. 35 (1997), no. 1, 69-76. https://doi.org/10.1007/BF02683320
  8. B. S. He and L. Z. Liao, Improvement of some projection methods for monotone nonlinear variational inequalities, J. Optim. Theory Appl. 112 (2002), no. 1, 111-128. https://doi.org/10.1023/A:1013096613105
  9. Z. H. Huang, Sufficient conditions on nonemptiness and boundedness of the solution set of the $P_{0}$ function nonlinear complementarity problem, Oper. Res. Lett. 30 (2002), no. 3, 202-210. https://doi.org/10.1016/S0167-6377(02)00113-X
  10. Z. H. Huang, Generalization of an existence theorem for variational inequalities, J. Optim. Theory Appl. 118 (2003), no. 3, 567-585. https://doi.org/10.1023/B:JOTA.0000004871.55273.15
  11. Z. Liu and Y. He, Exceptional family of elements for generalized variational inequalities, J. Global Optim. 48 (2010), no. 3, 465-471. https://doi.org/10.1007/s10898-009-9500-5
  12. D. T. Luc, The Frechet approximate Jacobian and local uniqueness in variational in-equalities, J. Math. Anal. Appl. 268 (2002), no. 2, 629-646. https://doi.org/10.1006/jmaa.2001.7838
  13. D. T. Luc and M. A. Noor, Local uniqueness of solutions of general variational inequalities, J. Optim. Theory Appl. 117 (2003), no. 1, 103-119. https://doi.org/10.1023/A:1023604523716
  14. M. A. Noor, General variational inequalities, Appl. Math. Lett. 1 (1988), no. 2, 119-122. https://doi.org/10.1016/0893-9659(88)90054-7
  15. M. A. Noor, Wiener-Hopf equations and variational inequalities, J. Optim. Theory Appl. 79 (1993), no. 1, 197-206. https://doi.org/10.1007/BF00941894
  16. M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004), no. 1, 199-277. https://doi.org/10.1016/S0096-3003(03)00558-7
  17. M. A. Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009), no. 2, 182-186. https://doi.org/10.1016/j.aml.2008.03.007
  18. M. A. Noor, Some aspects of extended general variational inequalities, Abstract and Applied Analysis 2012 (2012), Article ID: 303569, 16 pages.
  19. J. S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games, Comput. Manag. Sci. 2 (2005), no. 1, 21-56. https://doi.org/10.1007/s10287-004-0010-0
  20. J. S. Pang and J. C. Yao, On a generalization of a normal map and equation, SIAM J. Control Optim. 33 (1995), no. 1, 168-184. https://doi.org/10.1137/S0363012992241673
  21. N. H. Xiu, Tangent projection equations and general variational inequalities, J. Math. Anal. Appl. 258 (2001), no. 2, 755-762. https://doi.org/10.1006/jmaa.2000.7517
  22. J. C. Yao, A basic theorem of complementarity for the generalized variational-like in-equality problem, J. Math. Anal. Appl. 158 (1991), no. 1, 124-138. https://doi.org/10.1016/0022-247X(91)90272-2
  23. J. C. Yao, On the general variational inequality, J. Math. Anal. Appl. 174 (1993), no. 2, 550-555. https://doi.org/10.1006/jmaa.1993.1139
  24. L. Yu and M. Liang, Convergence theorems of solutions of a generalized variational inequality, Fixed Point Theory Appl. 2011 (2011), no. 19, 10 pp.
  25. Y. B. Zhao and J. Han, Exceptional family of elements for a variational inequality problem and its applications, J. Global Optim. 14 (1999), no. 3, 313-330. https://doi.org/10.1023/A:1008202323884
  26. Y. B. Zhao and J. Y. Yuan, An alternative theorem for generalized variational inequalities and solvability of nonlinear quasi-$P_{\ast}^{M}$ complementarity problems, Appl. Math. Comput. 109 (2000), no. 2-3 167-182. https://doi.org/10.1016/S0096-3003(99)00019-3