DOI QR코드

DOI QR Code

Organosulfur Compounds in Fermented Garlic Extracts and the Effects on Alcohol Induced Cytotoxicity in CYP2E1-Transfected HepG2 Cells

유산균발효마늘의 유기황화합물과 CYP2E1-Transfected HepG2 Cell에서 알코올 유발 세포독성에 미치는 영향

  • 정은봉 ((주)바이오랜드 생명공학연구소) ;
  • 최지휘 ((주)바이오랜드 생명공학연구소) ;
  • 유희종 ((주)바이오랜드 생명공학연구소) ;
  • 김기호 ((주)바이오랜드 생명공학연구소) ;
  • 이성구 ((주)바이오랜드 생명공학연구소) ;
  • 황용일 (경남대학교 식품생명학과) ;
  • 이승현 ((주)바이오랜드 생명공학연구소)
  • Received : 2012.10.18
  • Accepted : 2012.12.04
  • Published : 2013.03.31

Abstract

In this study, we investigated changes in the organosulfur compounds of garlic (by fermentation with lactic acid bacteria) and the effects of these fermented garlic extracts on alcohol-induced cytotoxicity in CYP2E1-transfected HepG2 cells. Lactobacillus plantarum has the highest growth rate in a garlic medium and the S-allyl-L-cysteine (SAC) in fermented garlic extracts with Lactobacillus plantarum and Pediococcus pentosaceus were significantly higher compared to other lactic acid bacteria strains (p<0.05). The SAC, S-ethyl cysteine (SEC) and S-methyl cysteine (SMC) in garlic extracts were all increased by fermentation with lactic acid bacteria. However, alliin in the fermented garlic extracts with lactic acid bacteria strains was lower than the original garlic extract and the contents of cycloalliin in the garlic extracts did not change with fermentation (p<0.05). The electron donating ability of the fermented garlic extracts increased with dose. The electron donating ability of the fermented garlic extract with L. plantarum and P. pentosaceus was over 90% efficient at 5 mg/g. The fermented garlic extracts (with lactic acid bacteria) and garlic extract were not influenced, up to $100{\mu}g/mL$, in CYPE1-transfected HepG2 cells. The CYPE1-transfected HepG2 cell viabilities were 92.60% and 92.23% when treated with both alcohol (200 mM) and fermented garlic extract ($100{\mu}g/mL$) with lactic acid bacteria respectively, for 6 days.

마늘에 적용가능 한 유산균을 찾기 위해 마늘 이외의 배지 성분 없이 각각의 유산균을 배양하고 유산균발효마늘 추출물을 제조하여 각각의 추출물의 유기황화합물을 분석하고 항산화효과 및 알코올 유발 세포독성에 미치는 영향을 알아보았다. 마늘멸균액을 배지로 유산균을 48시간 배양하였을 때 L. plantarum이 가장 잘 자랐으며 유산균발효마늘 추출물 중 항산화활성 등의 효능이 있는 것으로 알려진 SAC 함량은 L. plantarum의 발효물과 P. pentosaceus의 발효물이 각각 3.619 mg/g과 3.234 mg/g으로 가장 많은 것으로 나타났다(p<0.05). 그리고 SAC, SEC, SMC의 경우 유산균발효 마늘 추출물들이 마늘 추출물에 비해 높았으나 alliin의 경우 유산균발효마늘 추출물들이 마늘 추출물에 비하여 낮은 것으로 나타났다(p<0.05). 또한 cycloalliin의 경우 마늘 추출물과 유산균발효마늘 추출물들 간의 함량 차이는 없었다(p<0.05). 모든 유산균발효마늘 추출물이 농도 의존적으로 항산화활성이 높은 것으로 나타났으며, L. plantarum의 발효물과 P. pentosaceus의 발효물이 5.0 mg/g의 농도에서 90% 이상의 높은 전자공여능을 효과를 나타냈다. 유산균발효마늘 추출물들이 $100{\mu}g/mL$의 농도까지 CYP2E1 transfected HepG2 세포주에 영향을 주지 않았으며, 각각의 유산균발효 마늘 추출물을 알코올에 의해 손상된 CYP2E1 transfected HepG2 세포의 보호효과를 확인한 결과 에탄올과 시료를 6일간 처리한 경우에 FGPP와 FGLP가 각각 92.60%와 92.23%로 유의적으로 가장 높은 세포생존율을 보였다(p<0.05).

Keywords

References

  1. Lieber CS. 1994. Alcohol and the liver. Gastroenterology 106: 1085-1105. https://doi.org/10.1016/0016-5085(94)90772-2
  2. Lee KW, Nam BH, Jo WS, Oh SJ, Kang EY, Cui Y, Lee JY, Chenon SC, Jeong MH, Lee JD. 2006. Collection, identification and hepatic effect of native Cordyceps militaris. Korean J Mycol 34: 7-14. https://doi.org/10.4489/KJM.2006.34.1.007
  3. Fang C, Lindros KO, Badger TM, Ronis MJ, Ingelman- Sundberg M. 1998. Zonated expression of cytokines in rat liver: effect of chronic ethanol and the cytochrome P450 2E1 inhibitor, chlormethiazole. Hepatology 27: 1304-1310. https://doi.org/10.1002/hep.510270516
  4. Cho KJ, Cha JY, Yim JH, Kim JH. 2011. Effects of aging temperature and time on the conversion of garlic (Allium sativum L.) components. J Korean Soc Food Sci Nutr 40: 84-88. https://doi.org/10.3746/jkfn.2011.40.1.084
  5. Lawson LD, Wang ZJ. 2005. Allicin and allicin-derived garlic compounds increase breath acetone through allyl methyl sulfide: use in measuring allicin bioavailability. J Agric Food Chem 53: 1974-1983. https://doi.org/10.1021/jf048323s
  6. Choi YH, Shim YS, Kim CT, Lee C, Chin DB. 2007. Characteristics of thiosulfinates and volatile sulfur compounds from blanched garlic reacted with alliinase. Korean J Food Sci Technol 39: 600-607.
  7. Jang EK, Seo JH, Lee SP. 2008. Physiological activity and antioxidative effects of aged black garlic (Allium sativum L.) extract. Korean J Food Sci Technol 40: 443-448.
  8. Cañizares P, Gracia I, Gómez LA, García A, Martín De Argila C, Boixeda D, de Rafael L. 2004. Thermal degradation of allicin in garlic extracts and its implication on the inhibition of the in-vitro growth of Helicobacter pylori . Biotechnol Prog 20: 32-37.
  9. Yang ST. 2007. Antioxidative activity of extracts of aged black garlic on oxidation of human low density lipoprotein. J Life Sci 17: 1330-1335. https://doi.org/10.5352/JLS.2007.17.10.1330
  10. Rahman MS. 2007. Allicin and other functional active components in garlic: health benefits and bioavailability. Int J Food Prop 10: 245-268. https://doi.org/10.1080/10942910601113327
  11. Ichikawa M, Ide N, Yoshida J, Yamaguchi H, Ono K. 2006. Determination of seven organosulfur compounds in garlic by high-performance liquid chromatography. J Agric Food Chem 54: 1535-1540. https://doi.org/10.1021/jf051742k
  12. Ilic D, Nikolic V, Stankovic M, Nikolic L, Stanojevic L, Mladenovic-Ranisavljevic I, Smelcerovic A. 2012. Transformation of synthetic allicin: influence of ultrasound, microwaves, different solvents and temperatures, and the products isolation. Scientific World Journal doi: 10.1100/2012/561823.
  13. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  14. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  15. Lee YH, Ho JN, Dong MS, Park CH, Kim HK, Hong BS, Shin DH, Ch HY. 2005. Transfected HepG2 cells for evaluation of catechin effects on alcohol-induced CYP2E1 cytotoxicity. J Microbiol Biotechnol 15: 1310-1316.
  16. Feldberg RS, Chang SC, Kotik AN, Nadler M, Neuwirth Z, Sundstrom DC, Thompson NH. 1998. In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob Agents Chemother 32: 1763-1768.
  17. Cavallito CJ, Bailey JH. 1944. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties, and antimicrobial action. J Am Chem Soc 66: 1950-1951. https://doi.org/10.1021/ja01239a048
  18. Cavallito CJ, Bock JS, Suter CM. 1944. Allicin, the antibacterial principle of Allium sativum. II. Determination of chemical structure. J Am Chem Soc 66: 1952-1954. https://doi.org/10.1021/ja01239a049
  19. Kim YS, Baek HH, Chung IM, Kwon B, Ji GE. 2009. Garlic fermentation by lactic acid bacteria. Food Sci Biotechnol 18: 1279-1283.
  20. Sheela CG, Kumud K, Augusti KT. 1995. Anti-diabetic effects of onion and garlic sulfoxide amino acids in rats. Planta Med 61: 356-357. https://doi.org/10.1055/s-2006-958099
  21. Hatono S, Jimenez A, Wargovich MJ. 1996. Chemopreventive effect of S-allylcysteine and its relationship to the detoxification enzyme glutathione S-transferase. Carcinogensis 17: 1041-1044. https://doi.org/10.1093/carcin/17.5.1041
  22. Ueda Y, Tsubuku T, Miyajima R. 1994. Composition of sulfur- containing components in onion and their flavor characters. Biosci Biotechnol Biochem 58: 108-110. https://doi.org/10.1271/bbb.58.108
  23. Yanagita T, Han SY, Wang YM, Tsuruta Y, Anno T. 2003. Cycloalliin, a cyclic sulfur imino acid, reduces serum triacylglycerol in rats. Nutrition 19: 140-143. https://doi.org/10.1016/S0899-9007(02)00857-2
  24. Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. 2001. Intake of garlic and its bioactive components. J Nutr 131(3s): 955s-962s.
  25. Ide N, Lau BH, Ryu K, Matsuura H, Itakura Y. 1999. Antioxidant effects of fructosyl arginine, a Maillard reaction product in aged garlic extract. J Nutr Biochem 10: 372-376. https://doi.org/10.1016/S0955-2863(99)00021-2
  26. Kurose I, Higuchi H, Miura S, Saito H, Watanabe N, Hokari R, Hirokawa M, Takaishi M, Zeki S, Nakamura T, Ebinuma H, Kato S, Ishii H. 1997. Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology 25: 358-378.
  27. Wu D, Cederbaum Al. 1996. Ethanol cytotoxicity to a transfected HepG2 cell line expressing human cytochrome P4502E1. J Biol Chem 271: 23914-23919. https://doi.org/10.1074/jbc.271.39.23914

Cited by

  1. Effects of Various Garlic (Allium sativum) Extracts on Cholesterol Synthesis in HepG2 Cells vol.44, pp.12, 2015, https://doi.org/10.3746/jkfn.2015.44.12.1779
  2. Fermentation with Lactobacillus enhances the preventive effect of garlic extract on high fat diet-induced hepatic steatosis in mice vol.30, 2017, https://doi.org/10.1016/j.jff.2016.12.043
  3. Antiobesity Effect of Garlic Extract Fermented byLactobacillus plantarumBL2 in Diet-Induced Obese Mice vol.19, pp.9, 2016, https://doi.org/10.1089/jmf.2016.3674
  4. Hepatoprotective effects of lactic acid-fermented garlic extract against acetaminophen-induced acute liver injury in rats vol.25, pp.3, 2016, https://doi.org/10.1007/s10068-016-0143-2
  5. Quantitative Analysis of Allylmethyl Sulfide, Dimethyl Disulfide, and Dipropyl Sulfide in Biopesticides Containing Allium sativum Extract Using Gas Chromatography Mass Spectrometry–Head Space Sampler vol.34, pp.3, 2015, https://doi.org/10.5338/KJEA.2015.34.3.28
  6. Biological Activities of Solid-fermentation Garlic with Lactic Acid Bacteria vol.26, pp.4, 2016, https://doi.org/10.5352/JLS.2016.26.4.446
  7. Antioxidant Compounds and Activities of Methanolic Extracts from Steam-Dried Allium hookeri Root vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1725
  8. Quality characteristics of vinegar fermented with different amounts of black garlic and alcohol vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.34
  9. Ameliorating Effects of Lactic Acid-fermented Garlic Extracts on Oleic Acid-induced Hepatic Steatosis vol.46, pp.6, 2014, https://doi.org/10.9721/KJFST.2014.46.6.762
  10. Efficacy and safety of fermented garlic extract on hepatic function in adults with elevated serum gamma-glutamyl transpeptidase levels: a double-blind, randomized, placebo-controlled trial vol.56, pp.5, 2017, https://doi.org/10.1007/s00394-016-1318-6
  11. 알코올성 지방간을 유발시킨 마우스에서 유산균 발효 마늘추출물의 간 보호 효과 vol.43, pp.11, 2013, https://doi.org/10.3746/jkfn.2014.43.11.1642
  12. 혈관내피세포에 부착하는 THP-1에 대한 발효마늘추출물의 효과 vol.27, pp.5, 2017, https://doi.org/10.5352/jls.2017.27.5.553
  13. 발효흑마늘 추출물이 흰쥐의 지질대사 및 간기능 개선에 미치는 영향 vol.33, pp.1, 2013, https://doi.org/10.9799/ksfan.2020.33.1.017