DOI QR코드

DOI QR Code

In vitro Antioxidant, Anti-allergic and Anti-inflammatory Effects of Ethanol Extracts from Korean Sweet Potato Leaves and Stalks

한국산 고구마잎과 고구마줄기 에탄올 추출물의 in vitro 항산화, 항알레르기 및 항염증효과

  • 곽충실 (서울대학교 노화고령사회연구소) ;
  • 이근종 (숭의여자대학교 식품영양과) ;
  • 장진희 (서울대학교 노화고령사회연구소) ;
  • 박준희 (서울대학교 노화고령사회연구소) ;
  • 조지현 (서울대학교 노화고령사회연구소) ;
  • 박지호 (서울대학교 노화고령사회연구소) ;
  • 김경미 (서일대학교 식품영양과) ;
  • 이미숙 (한남대학교 식품영양학과)
  • Received : 2012.11.15
  • Accepted : 2013.01.23
  • Published : 2013.03.31

Abstract

In order to increase the utilization of sweet potato leaves and stalks as much as roots, it is necessary to study their beneficial potential. In this study, the antioxidant, antiallergic and anti-inflammatory effects of sweet potato leaves and stalks were evaluated by measuring total polyphenol and flavonoid contents, DPPH radical scavenging effects, the reducing power and inhibition effects on xanthine oxidase (XO), 5-lipoxygenase (LOX), and cyclo-oxygenase (COX)-2 activities. Blanched sweet potato leaves (SL), raw whole purple stalks (ST) and peeled stalks (PST) were freeze-dried and extracted with 95% ethanol. Total polyphenol content was highest in SL (11.03 mg/g), followed by ST (0.87 mg/g), and PST (0.37 mg/g). Total flavonoid content was highest for SL (9.01 mg/g), followed by ST (0.50 mg/g) and PST (0.25 mg/g). The $IC_{50}$ for DPPH radical scavenging effects was highest for SL ($43.6{\mu}g/mL$), followed by ST ($308.4{\mu}g/mL$) and PST ($1,631.3{\mu}g/mL$). The reducing power was highest for SL ($59.72{\mu}g$ ascorbic acid eq./mL), followed by ST ($12.56{\mu}g$ ascorbic acid eq./mL) and PST ($2.18{\mu}g$ ascorbic acid eq./mL) with $1,000{\mu}g/mL$ of ethanol extract. The inhibition rate on XO activity was highest for SL (13.06%), followed by ST (5.05%) and PST (0.0%) at $250{\mu}g/mL$ extract treatment. The inhibition rate on COX-2 activity was highest for SL (55.34%), followed by ST (2.18%) and PST (0.0%) at $250{\mu}g/mL$ extract treatment. The inhibition rate on 5-LOX activity was highest for SL (91.16%), followed by ST (33.38%) and PST (14.93%) at $50{\mu}g/mL$ treatment. Taken together, sweet potato leaves showed high antioxidative, anti-allergic and anti-inflammatory activities, especially with very strong inhibition effects on 5-LOX activity. These beneficial effects of sweet potato leaves might be mainly caused by the high content of polyphenols and flavonoids.

고구마뿌리에 비하여 많은 양이 폐기되는 고구마 줄기와 잎의 이용을 활성화시키고 기능성식품 소재로의 가능성을 알아보기 위하여 잎이 달려 있는 보라색 고구마줄기를 재래시장에서 구입하여 고구마잎(SL), 고구마줄기(ST), 껍질 제거한 고구마줄기(PST)의 총 폴리페놀과 총 플라보노이드 함량을 측정하고, in vitro 시스템에서의 항산화효과, 항알레르기 및 항염증효과를 검색하고자 하였다. 고구마잎은 데치고, 고구마줄기는 생으로 동결건조한 후 에탄올 추출물을 얻어 실험하였다. 총 폴리페놀 함량은 SL(11.03 mg tannic acid/g)> ST(0.87 mg tannic acid/g)> PST(0.37 mg tannic acid/g)이었고, 총 플라보노이드 함량은 SL(9.01 mg rutin/g)> ST(0.50 mg rutin/g)> PST(0.25 mg rutin/g)이었다(p<0.001). DPPH 라디칼을 50% 제거시키는 에탄올 추출물의 농도($IC_{50}$)는 SL($43.6{\mu}g/mL$)< ST($308.4{\mu}g/mL$)$1,631.3{\mu}g/mL$)로 고구마잎이 가장 우수한 효과를 나타내었다. 양성대조시약으로 사용한 BHA의 $IC_{50}$값은 $8.30{\mu}g/mL$이었으며, 처리 농도 $1,000{\mu}g/mL$에서의 환원력은 SL($59.72{\mu}g$ ascorbic acid eq./mL)> ST($12.56{\mu}g$ ascorbic acid eq./mL)> PST($2.18{\mu}g$ ascorbic acid eq./mL)로 고구마잎이 가장 좋았다(p<0.001). 한편 염증반응에 관여하는 xanthine oxidase(XO) 활성저해율을 측정한 결과 처리 농도 $250{\mu}g/mL$에서 SL(13.06%)> ST(5.05%)> PST(0.0%)로 고구마잎이 줄기에 비하여 우수하였으며(p<0.01), 처리 농도 $50{\mu}g/mL$에서의 5-lipoxygenase(LOX) 활성저해율은 SL(91.16%)> ST(33.38%)> PST(14.93%)로(p<0.001) 고구마잎의 효과는 양성대조시약인 EGCG의 저해율(94.42%)과 비슷한 정도로 매우 우수하였다. 또한 $250{\mu}g/mL$ 농도로 처리 시 cyclooxygenase(COX)-2 활성저해율은 SL(55.34%)> ST(2.18%)> PST(0.0%)로 XO 활성저해율과 비슷한 패턴을 보였다(p<0.001). 측정변수들 간의 상관관계를 분석해 본 결과 총 폴리페놀 함량은 플라보노이드 함량($r^2$=0.9988, p<0.001), 환원력($r^2$=0.9982, p<0.001), XO 활성저해율($r^2$=0.8322, p<0.05), COX-2 활성저해율($r^2$=0.9950, p<0.001), 5-LOX 활성저해율과 양의 상관관계($r^2$=0.9823, p<0.001)를 나타내었으며, 플라보노이드 함량은 환원력($r^2$=0.9946, p<0.001), XO 활성저해율($r^2$=0.8392, p<0.05), 5-LOX 활성저해율($r^2$=0.9749, p<0.01), COX-2 활성저해율과 유의한 양의 상관관계($r^2$=0.9937, p<0.001)를 보였다. 또한, 환원력은 XO 활성 저해율($r^2$=0.8384, p<0.05), 5-LOX 활성저해율($r^2$=0.9883, p<0.001) 및 COX-2 활성저해율과 유의한 양의 상관관계($r^2$=0.9954, p<0.001)를 나타내었으며, XO 활성저해율은 5-LOX 활성저해율과 유의한 양의 상관관계를 보였으나($r^2$=0.8786, p<0.05) COX-2 활성저해율과는 상관성을 보이지 않았다. 5-LOX 활성저해율은 COX-2 활성저해율과 유의한 양의 상관관계($r^2$=0.9815, p<0.01)를 나타내었다. 이상의 결과들로부터 고구마잎은 폴리페놀 및 플라보노이드 함량이 매우 높았고 우수한 항산화효과를 보였으며, 알레르기 및 염증반응과 관련이 있는 효소인 XO, 5-LOX 및 COX-2의 활성도 모두 억제하는 효과도 우수하였지만 특히 5-LOX 활성 억제효과는 EGCG와 비슷한 정도로 매우 우수하였다. 따라서 건강을 위하여 고구마잎의 섭취를 증대시킬 수 있는 다양한 방안을 강구할 필요가 있으며, 고구마 줄기를 섭취할 경우에는 가능한 껍질을 모두 섭취하는 것이 좋겠다.

Keywords

References

  1. Ishida H, Suzuno H, Sugiyama N, Innami S, Tadokoro T, Maekawa A. 2000. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem 68: 359-367. https://doi.org/10.1016/S0308-8146(99)00206-X
  2. Woo KS, Seo HI, Lee YH, Kim HY, Ko JY, Song SB, Lee JS, Jung KY, Nam MH, Oh IS, Jeong HS. 2012. Antioxidant compounds and antioxidant activities of sweet potatoes with cultivated conditions. J Korean Soc Food Sci Nutr 41: 519-525. https://doi.org/10.3746/jkfn.2012.41.4.519
  3. Huang DJ, Lin CD, Chen HJ, Lin YH. 2004. Antioxidant and antiproliferative activities of sweet potato (Ipomoea batata [L.] Lam 'Tainong 57') constituents. Bot Bull Acad Sin 25: 179-186.
  4. Islam S. 2006. Sweetpotato (Ipomoea banatas L.) leaf: Its potential effect on human health and nutrition. J Food Sci 71: R13-R21.
  5. Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC. 2007. Antioxidant activities, phenolic and ${\beta}$-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem 103: 829-838. https://doi.org/10.1016/j.foodchem.2006.09.033
  6. Park JS, Chung BW, Bae JO, Lee JH, Jung MY, Choi DS. 2008. Effects of sweet potato cultivars and koji types on general properties and volatile flavor compounds in sweet potato soju. Korean J Food Sci Technol 42: 468-474.
  7. Woolfe JA. 1992. Sweet potato: An untapped food resource. Cambridge University Press, Cambridge, UK. p 118-187.
  8. Islam MS, Yoshimoto M, Terahara N, Yamakawa O. 2002. Anthocyanin compositions in sweetpotato (Ipomoea batatas L.) leaves. Biosci Biotechnol Biochem 66: 2483-2486. https://doi.org/10.1271/bbb.66.2483
  9. Islam I, Shaikh AU, Shahidul IM. 2009. Antioxidative and antimutagenic potentials of phytochemicals from Ipomoea batatas (L) Lam. Intl J Cancer Res 5: 83-94. https://doi.org/10.3923/ijcr.2009.83.94
  10. Johnson M, Pace RD. 2010. Sweet potato leaves: properties and synergistic interactions that promote health and prevent disease. Nutr Rev 68: 604-615. https://doi.org/10.1111/j.1753-4887.2010.00320.x
  11. Sesso HD, Buring JE, Norkus EP, Gaziano JM. 2005. Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in men. Am J Clin Nutr 81: 990-997.
  12. Vita JA. 2005. Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81: 292S-297S.
  13. van't Veer P, Jansen MC, Klerk M, Kok FJ. 2000. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr 3: 103-107.
  14. Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymology 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  15. Chae SK, Kang GS, Ma SJ, Bang KW, Oh MW, Oh SH. 2002. Standard Food Analysis. Jigu-Moonwha Sa, Seoul, Korea. p 381-382.
  16. Yildirim A, Mavi A, Kara AA. 2001. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 49: 4083-4089. https://doi.org/10.1021/jf0103572
  17. Yasushi S, Tsukasa N, Keiko S, Hiroe Y, Hisashi Y. 1999. Stopped-flow and spectrophotometric study on radical scavenging by tea catechins and model compounds. Chem Pharm Bull 47: 1369-1374. https://doi.org/10.1248/cpb.47.1369
  18. Owen PL, Johns T. 1999. Xanthine oxidase inhibitory activity of northeastern North American plant remedies used for gout. J Ethnopharmacol 64: 149-160. https://doi.org/10.1016/S0378-8741(98)00119-6
  19. Coulibaly AY, Kiendrebeogo M, Kehoe PG, Sombie PA, Lamien CE, Millogo JF, Nacoulma OG. 2011. Antioxidant and anti-inflammatory effects of Scoparia dulcis L. J Med Food 14: 1576-1582. https://doi.org/10.1089/jmf.2010.0191
  20. Yoo KH, Jeong JM. 2009. Antioxidative and antiallergic effect of persimmon leaf extracts. J Korean Soc Food Sci Nutr 38: 1691-1698. https://doi.org/10.3746/jkfn.2009.38.12.1691
  21. Middleton E Jr, Kandaswami C, Theoharides TC. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673-751.
  22. Surh Y. 1999. Molecular mechanism of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428: 305-327. https://doi.org/10.1016/S1383-5742(99)00057-5
  23. Nakayama T, Niimi T, Osawa T, Kawakishi S. 1992. The protective role of polyphenols in cytotoxicity of hydrogen peroxide. Mutat Res 281: 77-80. https://doi.org/10.1016/0165-7992(92)90039-K
  24. Toda M, Okubo S, Hiyoshi R, Shimamura T. 1989. The bactericidal activity of tea and coffee. Letter Appl Microbiol 8: 123-125. https://doi.org/10.1111/j.1472-765X.1989.tb00255.x
  25. Islam MS, Yoshimoto M, Yahara S, Okuno S, Ishiguro K, Yamakawa O. 2002. Identification and characterization of foliar polyphenolic composition in sweet potato (Ipomoea batatas L.) genotypes. J Agric Food Chem 50: 3718-3722. https://doi.org/10.1021/jf020120l
  26. Shahrzed S, Bitsch I. 1996. Determination of some pharmacologically active phenolic acids in juices by high-performance liquid chromatography. J Chromatogr A 741: 223-231. https://doi.org/10.1016/0021-9673(96)00169-0
  27. Truong VD, McFeeters RF, Thompson RT, Dean LL, Shofran B. 2007. Phenolic acid content and composition in leaves and roots of common commercial sweetpotato (Ipomea batata L.) cultivars in the United States. J Food Sci 72: C343-C349. https://doi.org/10.1111/j.1750-3841.2007.00415.x
  28. Kaul A, Khanduja KL. 1998. Polyphenols inhibit promotional phase of tumorigenesis: relevance of superoxide radicals. Nutr Cancer 32: 81-85. https://doi.org/10.1080/01635589809514723
  29. Yoshino M, Murakami K. 1998. Interaction of iron with polyphenolic compounds: application to antioxidant characterization. Anal Biochem 257: 40-44. https://doi.org/10.1006/abio.1997.2522
  30. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM. 2009. In vitro antioxidant and xanthine oxidase inhibitory activities of mathanolic Swietenia mahagoni seed extract. Molecules 14: 4476-4485. https://doi.org/10.3390/molecules14114476
  31. Luqman S, Srivastava S, Kumar R, Maurya AK, Chanda D. 2012. Experimental assessment of Moringa olefera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays. Evid Based Complement Alternat Med doi:10.1155/2012/519084.
  32. Nagai M, Tani M, Kishimoto Y, Iizuka M, Saita E, Toyozaki M, Kamiya T, Ikeguchi M, Kondo K. 2011. Sweet potato (Ipomoea batatas L.) leaves suppressed oxidation of low density lipoprotein (LDL) in vitro and in human subjects. J Clin Biochem Nutr 48: 203-208. https://doi.org/10.3164/jcbn.10-84
  33. Chang WH, Hu SP, Huang YF, Yeh TS, Liu JF. 2010. Effect of purple sweet potato leaves consumption on exerciseinduced oxidative stress and IL-6 and HSP72 levels. J Appl Physiol 109: 1710-1715. https://doi.org/10.1152/japplphysiol.00205.2010
  34. Chiang HC, Chen YY. 1993. Xanthine oxidase inhibitors from the roots of eggplant (Solanum melongena L.). J Enzyme Inhib Med Chem 7: 225-235. https://doi.org/10.3109/14756369309040765
  35. Chang WS, Chiang HC. 1995. Structure-activity relationship of coumarins in xanthine oxidase inhibition. Anticancer Res 15: 1969-1973.
  36. Lin CC, Huang PC, Lin JM. 2000. Antioxidant and hepatoprotective effects of Anoectochilus formosanus and Gynostemma pentaphyllum. Am J Chin Med 28: 87-96. https://doi.org/10.1142/S0192415X00000118
  37. Nathan C. 2002. Points of control in inflammation. Nature 420: 846-852. https://doi.org/10.1038/nature01320
  38. Wang MT, Honn KV, Nie D. 2007. Cyclooxygenase, prostanoids and tumor progression. Cancer Metastasis Res 26: 525-534. https://doi.org/10.1007/s10555-007-9096-5
  39. Tinker AC, Wallace AV. 2006. Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases? Curr Top Med Chem 6: 77-92. https://doi.org/10.2174/156802606775270297
  40. Higuchi M, Higashi N, Taki H, Osawa T. 1990. Cytolytic mechanism of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanism act synergistically as the major cytolytic mechanism of activated macrophages. J Immunol 144: 1425-1431.
  41. Kubes P. 2000. Inducible nitric oxide synthase: a little bit of good in all of us. Gut 47: 6-9. https://doi.org/10.1136/gut.47.1.6
  42. Henderson WR Jr. 1994. Role of leukotrienes in asthma. Ann Allergy 72: 272-278.
  43. Reddy CM, Bhat VB, Kiranmai G, Reddy MN, Reddanna P, Madyastha KM. 2000. Selective inhibition of cyclooxygenase- 2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem Biophys Res Commun 277: 599-603. https://doi.org/10.1006/bbrc.2000.3725
  44. Martel-Pelletier J, Lajeunesse D, Reboul P, Pelletier JP. 2007. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Annul Rheum Dis 62: 501-509.
  45. Shih PH, Yeh CT, Yen GC. 2007. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J Agric Food Chem 55: 9427-9435. https://doi.org/10.1021/jf071933i
  46. Karlsen A, Retterstøl L, Laake P, Paur I, Kjolsrud-Bøhn S, Sandvik L, Blomhoff R. 2007. Anthocyanins inhibit nuclear factor-${\kappa}B$ activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr 137: 1951-1954.
  47. Kolosova NG, Lebedev PA, Dikalova AE. 2004. Comparison of antioxidants in the ability to prevent cataract in prematurely aging OXYS rats. Bull Exp Biol Med 137: 249-251. https://doi.org/10.1023/B:BEBM.0000031561.71977.85

Cited by

  1. Quality Characteristics of Sponge Cake Added with Purple Sweet Potato Depending on Various Shelf-Life vol.27, pp.4, 2014, https://doi.org/10.9799/ksfan.2014.27.4.558
  2. Chemical Compositions and Antioxidative Activities of Sweet Potato Foliages Harvested by the Cultivation Period and Tips Location vol.27, pp.5, 2014, https://doi.org/10.9799/ksfan.2014.27.5.897
  3. In vitro Antioxidant and Anti-inflammatory Effects of Ethanol Extracts from Sprout of Evening Primrose (Oenothera laciniata) and Gooseberry (Actinidia arguta) vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.207
  4. Antioxidant and Xanthine Oxidase Inhibitory Activities of Hot Water Extracts of Medicinal Herbs vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1712
  5. In vitro Antioxidant and Anti-Inflammatory Activities of Ethanol Extract and Sequential Fractions of Flowers of Prunus persica in LPS-Stimulated RAW 264.7 Macrophages vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1439
  6. The Dyeability of Silk Fabrics with Sweet Potato Stem·Leaf Extract vol.28, pp.3, 2016, https://doi.org/10.5764/TCF.2016.28.3.219
  7. Food Composition of Raw, Boiled, and Roasted Sweet Potatoes vol.28, pp.1, 2017, https://doi.org/10.7856/kjcls.2017.28.1.59
  8. Effect of hot-air drying temperature on antioxidative activity of sweetpotato leaves vol.22, pp.5, 2015, https://doi.org/10.11002/kjfp.2015.22.5.708
  9. Suppressive effects of ethanol extract ofAralia elataon UVB-induced oxidative stress in human keratinocytes vol.49, pp.3, 2016, https://doi.org/10.4163/jnh.2016.49.3.135
  10. Anti-Gout Effect of Ethanol Extracts from Chrysanthemum indicum Linne vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.797
  11. Vitamin C Quantification of Korean Sweet Potatoes by Cultivar and Cooking Method vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.955
  12. Antioxidant Activities of Extracts from Leaves and Stems of Achyranthes japonica vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.972
  13. 고구마 소주 주박의 항균 및 항혈전 활성 vol.42, pp.3, 2014, https://doi.org/10.4014/kjmb.1405.05005
  14. 한국인 다소비 채소의 에탄올 추출물이 LPS 처리된 대식세포에서 NO, TNF-${\alpha}$와 MCP-1 분비에 미치는 영향 vol.24, pp.6, 2014, https://doi.org/10.17495/easdl.2014.12.24.6.776
  15. Quality Characteristics of Sweet Potato Stalks Kimchi Containing Xylitol during the Fermentation Periods vol.28, pp.5, 2013, https://doi.org/10.17495/easdl.2018.8.28.5.327
  16. Selection of Excellent Sweetpotato Varieties Suitable for Tip Vegetable Use vol.52, pp.4, 2013, https://doi.org/10.9787/kjbs.2020.52.4.342
  17. Bioactive Compounds, Antioxidants, and Health Benefits of Sweet Potato Leaves vol.26, pp.7, 2013, https://doi.org/10.3390/molecules26071820