DOI QR코드

DOI QR Code

Effects of Feed Moisture on the Physicochemical Properties of Extruded Corn Fibers

수분주입량에 따른 압출성형 옥수수 섬유질의 물리화학적 특성

  • Kim, Cheol-Hyun (Dept. of Food Science and Technology, Kongju National University) ;
  • Ryu, Gi Hyung (Dept. of Food Science and Technology, Kongju National University)
  • Received : 2012.12.13
  • Accepted : 2013.01.02
  • Published : 2013.03.31

Abstract

This study was designed to examine changes in the physicochemical properties of extruded corn fibers with different amounts of feed moisture (30, 40, and 50%). The screw speed and die temperature were fixed to 200 rpm and $140^{\circ}C$, respectively. The crude ash, fat, and protein in corn fiber decreased from the extrusion process. The insoluble dietary fiber in corn fibers decreased, while soluble dietary fiber increased at a feed moisture of 30%. The specific length of the extruded corn fiber increased while the specific mechanical energy input, density, breaking strength, and elastic modulus decreased. The water absorption index (WAI) and reducing sugar content of the corn fibers did not significantly change, but the water soluble index (WSI) decreased as the feed moisture content of the corn fiber increased. On the other hand, the WAI of de-starched corn fiber decreased while WSI and reducing sugars increased as the feed moisture content of the corn fiber increased.

본 연구는 옥수수 섬유질을 수분주입량의 변화에 따라 압출성형 옥수수 섬유질과 탈전분 압출성형 옥수수 섬유질의 물리화학적 특성 변화를 측정하였다. 원료의 수분주입량은 30, 40, 50%로 조절하였으며 스크루 회전속도와 사출구 온도는 각각 200 rpm, $140^{\circ}C$로 고정시켜 압출성형 하였다. 일반성분 함량은 원료에 비해 감소하였으며, 수분주입량이 30%일 때 옥수수 섬유질과 탈전분 옥수수 섬유질의 불용성 식이섬유 함량은 감소하고 수용성 식이섬유 함량은 증가하였다. 압출성형 옥수수 섬유질의 비기계적 에너지, 직경팽화율, 밀도, 파괴력, 탄성계수는 수분함량이 증가할수록 감소하였고, 비길이는 증가하였다. 압출성형 옥수수 섬유질의 수분흡착지수와 환원당은 수분주입량이 증가할수록 변화가 없었으며 수분용해지수는 감소하였다. 반면에 탈전분 옥수수 섬유질의 수분흡착지수는 감소하고 수분용해지수와 환원당은 증가하였다. 수분주입량 30%일 때 유용성분의 추출이 미량 증가하는 것으로 보아 압출성형공정의 적용하여 섬유질에 포함된 유용성분의 추출이 용이할 것으로 생각된다.

Keywords

References

  1. Kim MH, Gil SK, Kim CH, Lee KC, Tie J, Ryu GH. 2012. Effects of extrusion conditions on change in properties of corn fiber. Food Eng Prog 16: 40-46.
  2. Saha BC. 2003. Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30: 279-291. https://doi.org/10.1007/s10295-003-0049-x
  3. Hwang JK, Kim CT, Hong SI, Kim CJ. 1994. Solubilization of plant cell walls by extrusion. J Korean Soc Food Nutr 23: 358-370.
  4. Saulnier L, Vigouroux J, Thibault JF. 1995. Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272: 241-253. https://doi.org/10.1016/0008-6215(95)00053-V
  5. Vitaglione P, Napolitano A, Fogliano V. 2008. Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Technol 19: 451-463. https://doi.org/10.1016/j.tifs.2008.02.005
  6. Shin HH, Lee SH, Park BS, Rhim TS, Hwang JK. 2003. Solubilization of whole grains by extrusion and enzyme treatment. Korean J Food Sci Technol 35: 849-855.
  7. Ning L, Villota R, Artz WE. 1991. Modification of corn fiber through chemical treatments in combination with twinscrew extrusion. Cereal Chem 68: 632-636.
  8. Lee WJ, Schwarz PB. 1994. Effect of twin-screw extrusion on physical properties and dietary fiber content of extrudates from barley/corn blends. Food Sci Biotechnol 3: 169-174.
  9. Gáspár M, Juhász T, Szengeyl ZS, Reczey K. 2005. Fractionation and utilisation of corn fibre carbohydrates. Process Biochem 40: 1183-1188. https://doi.org/10.1016/j.procbio.2004.04.004
  10. Gaspar M, Kalman G, Reczey K. 2007. Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem 42: 1135-1139. https://doi.org/10.1016/j.procbio.2007.04.003
  11. Ryu GH, Ng PKW. 2001. Effects of selected progress parameters on expansion and mechanical properties of wheat flour and whole cornmeal extrudates. Starch 53: 147-154. https://doi.org/10.1002/1521-379X(200104)53:3/4<147::AID-STAR147>3.0.CO;2-V
  12. Alvarez-Martinez L, Kondury KP, Harper JM. 1988. A general model for expansion of extruded products. J Food Sci 53: 609-615. https://doi.org/10.1111/j.1365-2621.1988.tb07768.x
  13. Barrett A, Kaletunç G, Rosenburg S, Breslauer K. 1995. Effect of sucrose on the structure, mechanical strength and thermal properties of corn extrudates. Carbohydr Polymers 26: 261-269. https://doi.org/10.1016/0144-8617(95)00024-2
  14. AACC International. 1999. Approved Methods of Analysis. 11th ed. Method 56-20. American Association of Cereal Chemists, St. Paul, MN, USA.
  15. AACC International. 1999. Approved Methods of Analysis. 11th ed. Method 08-01, 30-25, 46-10. American Association of Cereal Chemists, St. Paul, MN, USA.
  16. AOAC International. 2005. Official Methods of Analysis. 18th ed. Method 996.11. Association of Official Analytical Chemists, Washington, DC, USA.
  17. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428. https://doi.org/10.1021/ac60147a030
  18. AOAC International. 2005. Official Methods of Analysis. 18th ed. Method 991.43. Association of Official Analytical Chemists, Washington, DC, USA.
  19. Brand-Williams W, Cuvelier ME, Berset C. 1994. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30.
  20. Serpen A, Gökmen V, Pellegrini N, Fogliano V. 2008. Direct measurement of the total antioxidant capacity of cereal products. J Cereal Sci 48: 816-820. https://doi.org/10.1016/j.jcs.2008.06.002
  21. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964. https://doi.org/10.1021/jf0255937
  22. Waterhouse AL. 2003. Unit I1.1 Determination of total phenolics. In Current Protocols in Food Analytical Chemistry. DOI: 10.1002/0471142913.faa0101s06
  23. Mahsa M, Asgar F. 2010. Comparison of the effects of extrusion cooking on some cereal starches. Int J Food Eng DOI: 10.2202/1556-3758.1456
  24. Ryu GH, Lee CH. 1988. Effects of moisture content and particle size of rice flour on the physical properties of the extrudate. Korean J Food Sci Technol 20: 463-469.
  25. Stojceska V, Ainsworth P, Plunkett A, lbanoglu S. 2008. The recycling of brewer's processing by-product into ready-to-eat snacks using extrusion technology. J Cereal Sci 47: 469-479. https://doi.org/10.1016/j.jcs.2007.05.016
  26. Mahasukhonthachat K, Sopade PA, Gidley MJ. 2010. Kinetics of starch digestion and functional properties of twinscrew extruded sorghum. J Cereal Sci 51: 392-401. https://doi.org/10.1016/j.jcs.2010.02.008
  27. Tie J, Park HY, Ryu GH. 2005. Characteristics of cereals prepared by extrusion-cooking and freeze-drying. Korean J Food Sci Technol 37: 757-762.
  28. Stojceska V, Ainsworth P, Plunkett A, Ibanoglu S. 2009. The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chem 114: 226-232. https://doi.org/10.1016/j.foodchem.2008.09.043
  29. Hwang JK, Kim JT, Cho SJ, Kim CJ. 1995. Effects of various thermal treatments on physicochemical properties of wheat bran. Korean J Food Sci Technol 27: 394-403.
  30. Kim DE, Hong SY, Kang WS, Yu CY, Lee BG, Chung IM, Lim JD. 2009. Influence of extrusion on dietary fiber profile and bioactive compound in different parts of tatary buckwheat (Fagopyrum tataricum). Korean J Medicinal Crop Sci 17: 379-387.
  31. Choi CH, Song ES, Kim JS, Kang MH. 2003. Antioxidative activities of Castanea Crenata Flos. methanol extracts. Korean J Food Sci Technol 35: 1216-1220.

Cited by

  1. Increase in Anti-Oxidant Components and Reduction of Off-Flavors on Radish Leaf Extracts by Extrusion Process vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1769
  2. Effects of Extrusion Process Variables on the Physicochemical Characteristics of Extruded Biji vol.22, pp.1, 2018, https://doi.org/10.13050/foodengprog.2018.22.1.50
  3. Effects of Ultrasonication Treatment on Physical and Functional Characteristics of Fruits and Vegetables for Juice Production vol.33, pp.4, 2013, https://doi.org/10.9724/kfcs.2017.33.4.387