DOI QR코드

DOI QR Code

Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow

초음속 노즐 유동의 최적해석을 위한 난류모델의 평가와 선정

  • 감호동 (부경대학교 대학원 에너지시스템공학과) ;
  • 김정수 (부경대학교 기계공학과)
  • Received : 2012.11.30
  • Accepted : 2013.01.21
  • Published : 2013.02.01

Abstract

Assessment and validation of RANS turbulence models are conducted for the optimal analysis of supersonic converging-diverging nozzle through the comparison between computational results and experimental data. One/two equation turbulence closures such as Spalart-Allmaras, RNG k-${\varepsilon}$, and k-${\omega}$ SST are employed to simulate the two-dimensional nozzle flow. Computational results with the turbulence models mentioned fairly well predict shock structure of the nozzle-inside and pressure distribution along the wall. Especially, SST model among the employed ones shows the best agreement to experimental results.

초음속 축소-확대 노즐 유동을 정확하게 해석하기 위하여, 실험치와 해석값 사이의 비교를 통해 난류모델 성능평가를 수행한다. Boussinesq 가정을 적용한 RANS 방정식으로 2차원 노즐 유동을 해석하되, Spalart-Allmaras, RNG k-${\varepsilon}$, 그리고 k-${\omega}$ SST 난류모델을 평가에 사용한다. 각 모델들로 계산된 노즐 벽면의 압력구배 및 충격파 구조는 실험 데이터와 유사한 결과를 보였는데, 그 중에서도 SST 난류모델이 실험값에 가장 근접한 해석결과를 나타내었다.

Keywords

References

  1. Garrett, S., From Galaxies to Turbines: Science, Technology, and the Parsons Family, Taylor & Francis, 1999
  2. Sutton, G. P., History of Liquid Propellant Rocket Engines, 1st Ed., AIAA, 2006
  3. 감호동, 김정수, 배대석, "지상연소시험평가용 추력기 노즐의 성능해석과 형상설계," 한국추진공학회지, 제16권, 제2호, 2012, pp.10-16 https://doi.org/10.6108/KSPE.2012.16.2.010
  4. Kam, H. D., Kim, J. S., Lee, J. W., and Kim, I. T., "Performance Analysis for the Design Optimization of a Thruster Nozzle Used for Ground Firing Test," Asian Joint Conference on Propulsion and Power, 2012-143, 2012
  5. Hunter, C. A., "Experimental, Theorical, and Computational Investigation of Separated Nozzle Flows," AIAA 98-3107 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 1998
  6. ANSYS Fluent User's Guide 14.0 ANSYS Inc., 2011
  7. Chen, Z. J. and Pezekwas, A. J,. "A Coupled Pressure-based Computational Method for Incompressible/Compressible Flows," Journal of Computational Physics, Vol. 299, No. 24, 2010, pp.9150-9165
  8. Spalart, P. R. and Allmaras, S. R., "A One-equation Turbulence Model for Aerodnamic Flows," Recherche Aerospatiale, Vol. 1, 1994, pp.5-21
  9. Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G., "Development of Turbulence Models for Shear Flows by a Double Expansion Technique," Physics of Fluids, Vol. 4, No. 7, pp.1510-1520 https://doi.org/10.1063/1.858424
  10. Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA, Vol. 32, No. 8, 1994, pp.1598-1605 https://doi.org/10.2514/3.12149
  11. Dalbello, T., Georgiadis, N. J., Yoder, D. A., and Keith, T. G., "Computational Study of Axisymmetric Off-Design Nozzle Flows," NASA TM-2003-212876, 2003
  12. ANSYS ICEM User's Guide 14.0, ANSYS Inc., 2011

Cited by

  1. A Computational Study on the Shock Structure and Thrust Performance of a Supersonic Nozzle with Overexpanded Flow vol.18, pp.4, 2014, https://doi.org/10.6108/KSPE.2014.18.4.001
  2. The Mechanism for the Quasi-Back-Attack Phenomenon of Gas Jets Submerged in Water pp.2093-2480, 2019, https://doi.org/10.1007/s42405-018-00138-1