DOI QR코드

DOI QR Code

Processing of Porous Ceramics by Direct Foaming: A Review

  • Pokhrel, Ashish (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Seo, Dong Nam (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Lee, Seung Taek (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Kim, Ik Jin (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
  • Received : 2012.09.19
  • Accepted : 2013.03.14
  • Published : 2013.03.31

Abstract

Macro porous ceramics possessing controlled microstructures and chemical compositions have increasingly proven useful in the industrial sphere. Their sintered structures have found application in both established and emerging, areas such as thermal insulation in buildings, filtration of liquids and molten materials, refractory insulation, bone scaffolds and tissue engineering. Stable ceramic foams can be formed by wet chemical methods using inorganic particles(e.g., $Al_2O_3$ or $SiO_2$). The wet foams are dried and sintered with improved porosity and mechanical properties. This review examines the different techniques used to prepare porous ceramics from ceramic foams, focusing on the explanation of this versatile method of direct foaming from the past to the present. Comparisons of the processes and the processing parameters are explained with the produced microstructures.

Keywords

References

  1. M. Scheffler and P. Colombo, "Cellular Ceramics: Structure, Manufacturing, Properties and Applications," p. 645, Weinheim, Wiley-VCH, Verlag GmbH & Co. KGaA, 2005.
  2. A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Processing Routes to Macroporous Ceramics - A Review," J. Am. Ceram. Soc., 89 [6] 1771-89 (2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x
  3. L. J. Gauckler, A. Studart, E. Tervoort, U. T. Gonzanbech, and I. Akartuna, "Ultrastable Particle Stabilized Foams and Emulsions," U.S. Pat No:A1 0325780, (Dec. 31, 2009).
  4. Y. Guzman, "Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications-A Review," Glass Ceram., 9 28-31 (2003).
  5. P. Colombo, "In Praise of Pores," Science, 32 381-83 (2008).
  6. P. Colombo and J .R. Hellmann, "Ceramic Foams from Pre- Ceramic Polymers," Mater. Res. Innovat., 6 260-72 (2002). https://doi.org/10.1007/s10019-002-0209-z
  7. P. Colombo and E. Bernardo, "Macro- and Micro-cellular Porous Ceramics from Preceramic Polymers," Compos. Sci. Technol., 63 2353-59 (2003). https://doi.org/10.1016/S0266-3538(03)00268-9
  8. P. Colombo, "Conventional and Novel Processing Methods for Cellular Ceramics," Phil. Trans. R. Soc. A., 364 109-24 (2006). https://doi.org/10.1098/rsta.2005.1683
  9. P. Colombo, "Engineering Porosity in Polymer-Derived Ceramics," J. Eur. Ceram. Soc., 28 1389-95 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.002
  10. P. Greil, "Advanced Engineering Ceramics," Adv. Mater., 14 [10] 709-16 (2002). https://doi.org/10.1002/1521-4095(20020517)14:10<709::AID-ADMA709>3.0.CO;2-9
  11. J. Zeschky, F. G. Neunhoeffer, J. Neubauer, S. H. J. Lo, B. Kummer, M. Scheffler, and P. Greil, "Preceramic Polymer Derived Ceramics," Compos. Sci. Technol., 63 2361-70 (2003). https://doi.org/10.1016/S0266-3538(03)00269-0
  12. J. Banhart, "Manufacturing Routes for Metallic foams," JOM 52[12] 22-27 (2000).
  13. J. Banhart, "Manufacture, Classification and application of Cellular Metals and Foams," Prog. Mater Sci., 46 559-632 (2001). https://doi.org/10.1016/S0079-6425(00)00002-5
  14. F. V. Zeppelin, M. Hirscher, H. Stanzick, and J. Banhart, "Desorbtion of Hydrogen from Blowing Agents Used for Foaming Metals," Compos. Sci. Technol., 63 2293-300 (2003). https://doi.org/10.1016/S0266-3538(03)00262-8
  15. C. Tuck and J. R. Evans, "Porous Ceramics from Aqueous Foams," J. Mater. Sci. Lett., 18 1003-05 (1999). https://doi.org/10.1023/A:1006665829967
  16. H. X. Peng, Z. Fan, J. R. G. Evans, and J. J. Busfield, "Microstructure of Ceramic Foams," J. Eur. Ceram. Soc., 20 807-13 (2000) https://doi.org/10.1016/S0955-2219(99)00229-0
  17. J. R. G. Evans, "Seventy Ways to Make Porous Ceramics," J. Eur. Ceram. Soc., 28 1421-32 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.015
  18. Y. W. Kim, S. H. Kim, C. Wang, and C. H. Park, "Fabrication of Microcellular Ceramics Using Gaseous Carbon Dioxide," J. Am. Ceram. Soc., 86 [12] 2231-33 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03641.x
  19. Y. W. Kim and C. B. Park, "Processing of Microcellular Preceramics Using Carbon Dioxide," Compos. Sci. Technol., 63 2371-77 (2003). https://doi.org/10.1016/S0266-3538(03)00270-7
  20. B. V. Manoj Kumar and Y. W. Kim, "Processing of Polysiloxane- Derived Porous Ceramics: Tropical Review," Sci. Technol. Adv. Mater., 11 1-16 (2010).
  21. O. Lyckfeldt and J. M. Ferreira, "Processing of Porous Ceramics by Starch Consolidation," J. Eur. Ceram. Soc., 28 131-40 (1998).
  22. F. Schuth and W. Schmidt, "Microporous and Mesoporous Materials," Adv. Eng. Mater., 4 [5] 269-79 (2005).
  23. S. Barg, C. Soltmann, M. Andrade, D. Koch, and G. Grathwohl, "Cellular Ceramics by Direct foaming of Emulsified Ceramic Powder Suspensions," J. Am. Ceram. Soc., 91 [9] 2823-29 (2008). https://doi.org/10.1111/j.1551-2916.2008.02553.x
  24. B. Neirinck, J. Fransaer, O. V. der Biest, and J. Vleugels, "A Novel Route to Produce Porous Ceramics," J. Eur. Ceram. Soc., 29 833-36 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.07.009
  25. W. Ramsden, "Separation of Solids in the Surface-Layers of Solutions and Suspensions," Proc. R. Soc. London., 72 156- 64 (1903). https://doi.org/10.1098/rspl.1903.0034
  26. S. U. Pickering, "Pickering: Emulsions," J. Chem. Soc., Trans., 91 2001-21(1907). https://doi.org/10.1039/ct9079102001
  27. L. J. Gauckler, T. Graule and F. Baader, "Ceramic Forming Using Enzyme Catalyzed Reactions," Mater. Chem. Phys., 61 78-102 (1999). https://doi.org/10.1016/S0254-0584(99)00117-0
  28. P. C. Hidber, T. J. Graule, and L. J. Gauckler, "Influence of the Disperant Structure on Properties of Electrostatically Stabilized Aqueous Alumina Suspension," J. Eur. Ceram. Soc., 17 [2-3] 239-49 (2002).
  29. U. T. Gonzenabach, A. R Studart, E. Tervoort, and L. J. Gauckler, "Stabilization of Foams with Inorganic Colloidal Particles," Langmuir., 22 10983-88 (2006). https://doi.org/10.1021/la061825a
  30. U. T. Gonzenabach, A. R Studart, E. Tervoort, and L. J. Gauckler, "Ultra-Stable Particle-Stabilized Foams," Angew. Chem. Int. Ed., 45 3526-30 (2006). https://doi.org/10.1002/anie.200503676
  31. A. R. Studart, U. T. Gonzenbach, I. Akartuna, E. Tervoort, and L. J. Gauckler, "Materials from Foams and Emulsions Stabilized by Colloidal Particles," J. Mater. Chem., 17 3283-89 (2007). https://doi.org/10.1039/b703255b
  32. U. T. Gonzenbach, A. R. Studart, D. Steinlin, E. Tervoort, and L. J. Gauckler, "Processing of Particle-Stabilized Wet Foams into Porous Ceramics," J. Am. Ceram. Soc., 90 [11] 3407-14 (2007). https://doi.org/10.1111/j.1551-2916.2007.01907.x
  33. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Tailoring the Microstruct -ure of Particle-Stabilized Wet Foams," Langmuir., 23 [3] 1025-32 (2007). https://doi.org/10.1021/la0624844
  34. A. Pokhrel, J. G. Park, W. Zhao, and I. J. Kim, "Functional Porous Ceramics Using Amphiphilic Molecule," J. Ceram. Proc. Res., 13 [4] 420-24 (2012).
  35. A. Pokhrel, Zhao Wei, and I. J. Kim, "Wet Foam Stabilized by Amphiphiles to Tailor the Microstructures of Porous Ceramics," Key Eng. Mater., 512-515 288-92(2012). https://doi.org/10.4028/www.scientific.net/KEM.512-515.288
  36. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Macroporous Ceramics from Particle-Stabilized Wet Foams," J. Am. Ceram. Soc., 90 [1] 19-22 (2007).
  37. A. Pokhrel, J. G. Park, J. S. Nam, D. S. Cheong, and I. J. Kim, "Stabilization of Wet Foams for Porous Ceramics Using Amphiphilic Particles," J. Kor. Ceram. Soc., 48 [5] 463-66 (2011). https://doi.org/10.4191/kcers.2011.48.5.463
  38. A. Pokhrel, J. G. Park, G. H. Jho, J. Y. Kim, and I. J. Kim, "Controlling the Porosity of Particle Stabilized $Al_2O_3$ Based Ceramics," J. Kor. Ceram. Soc., 48 [6] 600-03 (2011). https://doi.org/10.4191/kcers.2011.48.6.600
  39. I. Akartuna, A. R. Studart, E. Tervoot, U. T. Gonzenbach, and L. J. Gauckler, "Stabilization of Oil-in-Water Emulsions by Colloidal Particles Modified with Short Amphiphiles," Langmuir., 24 7161-68 (2008). https://doi.org/10.1021/la800478g
  40. A. Pokhrel, J. G. Park, S. M. Park, and I. J. Kim, "Tailoring the Microstructure of $Al_2O_3-SiO_2$ Wet Foams to Porous Ceramics," Submitted to J. Ceram. Pro. Res (2012).
  41. I. Akartuna, A. R. Studart, E. Tervoot, and L. J. Gauckler, "Macro Porous Ceramics from Particle-Stabilized Emulsions," Adv. Mater., 20 4714-18(2008). https://doi.org/10.1002/adma.200801888
  42. I. Akartuna, E. Tervoot, A. R. Studart, and L. J. Gauckler, "General Route for the Assembly of Functional Inorganic Capsules," Langmuir., 25 [21] 12419-24(2009). https://doi.org/10.1021/la901916q
  43. H. M. Princen and A. D. Kiss, "Rheology of Foams and Highly Concentrated Emulsions," J. Collid Interface Sci., 128 [1] 176 - 87 (1989). https://doi.org/10.1016/0021-9797(89)90396-2
  44. B. P. Binks, "Particles as Surfactants-Similarities and Differences," Curr. Opin. Colloid. Interface Sci., 7 21-41 (2002). https://doi.org/10.1016/S1359-0294(02)00008-0
  45. B. S. Murray, "Stabilization of Bubbles and Foams," Curr. Opin. Colloid. Interface Sci., 12 231-41 (2007).
  46. T. S. Horozov, "Foams and Foam Films Stabilized by Solid Particles," Curr. Opin. Colloid. Interface Sci., 13 134-40 (2008). https://doi.org/10.1016/j.cocis.2007.11.009
  47. O. Lyckfeldt and J. M. F. Ferreira, "Processing of Porous Ceramics by Starch Consolidation," J. Eur. Ceram. Soc., 18 131-40 (1998). https://doi.org/10.1016/S0955-2219(97)00101-5
  48. T. N. Hunter, R. J. Pugh, G. V. Fanks, and G. J. Jameson, "A Role of Particles in Stabilizing Foams and Emulsions," Adv. Colloid. Interface Sci., 13 [7] 57-81 (2008).
  49. P. J .Wilde, "Interface: Their Role in Foam and Emulsion Behavior," Curr. Opin. Colloid. Interface Sci., 5 176-81 (2000). https://doi.org/10.1016/S1359-0294(00)00056-X
  50. J. G. Park, A. Pokhrel, S. D. Nam, W. Zhao, B. Basnet, and I. J. Kim, "Self-Setting Wet Foams to Porous Ceramics by Direct Foaming," submitted to Adv. Appl. Ceram. (2012).
  51. F. K. Juillerat, U. T. Gonzanbech, P. Elser, A. R. Studart, and L. J. Gauckler, "Microstructural Control of Self-Setting Particle Stabilized Ceramic Foams," J. Am. Ceram. Soc., 94 [1] 77-83 (2011). https://doi.org/10.1111/j.1551-2916.2010.04040.x
  52. F. K. Juillerat, U. T. Gonzanbech, A. R. Studart, and L. J. Gauckler, "Self-Setting Particle Stabilized foams with Hierarchical Pore Strucutres," Mater. Lett., 64 1468-70 (2010). https://doi.org/10.1016/j.matlet.2010.03.062
  53. A. Pokhrel, S. D. Nam, G. H. Cho, and I. J. Kim, "Inorganic Phosphate Wet Foam Stabilization to Porous ceramics by Direct Foaming," submitted to Asian J. Chem. (2012).
  54. G. Morris, M. R. Pursell, S. J. Neethling, and J. J. Cilliers, "The Effect of Particle Hydrophobicity, Separation distance and Packing Patterns on the Stability of a Thin Film," J. Colloid Interface Sci., 327 138-44 (2008). https://doi.org/10.1016/j.jcis.2008.08.007
  55. N. D. Denkov, I. B. Ivanov, P. A. Kralchevsky, and D. T. Wasan, "A Possible Mechanism of Stabilization of Emulsions by Solid Particles," J. Colloid Interface Sci., 150 [2] 589-93 (1992). https://doi.org/10.1016/0021-9797(92)90228-E
  56. D. M. -Alguacil, E. Tervoort, C. Cattin and L. J. Gauckler, "Contact Angle and Adsorbtion Behavior of Carboxylic Acids on ${\alpha}-Al_2O_3$ Surfaces," J. Colloid Interface Sci., 353 512-18 (2011). https://doi.org/10.1016/j.jcis.2010.09.087
  57. G. Kaptay, "On the Equation of the Maximum Capillary Pressure Induced by Solid Particles to Stabilize Emulsions and Foams and on the Emulsion Stability Diagrams," Colloids Surf A., 282-283 387-401 (2006). https://doi.org/10.1016/j.colsurfa.2005.12.021
  58. I. Aranberri, B. P. Binks, J. H. Clint, and P. D. I. Fletcher, "Synthesis of Macroporous Silica from Solid-Stabilized Emulsion Templates," J. Porous Mater., 16 429-37 (2009). https://doi.org/10.1007/s10934-008-9215-x
  59. E. Dickinson, R. Ettelaie, T. Kostakis, and B. S. Murray, "Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles," Langmuir., 20 8517-25(2004). https://doi.org/10.1021/la048913k
  60. B. S. Murray and Ettelaie, "Foam Atability: Proteins and Nanoparticles," Curr. Opin Colloid. Interface Sci., 9 314 - 20 (2004). https://doi.org/10.1016/j.cocis.2004.09.004
  61. A. R. Studart, R. Libanori, A. Moreno, U. T. Gonzenbach, E. Tervoort, and L .J. Gauckler, "Unifying model for the Electro Kinetic and Phase Behavior of Aqueous Suspensions Containing Short and Long Amphiphiles," Langmuir., 27 11835 -44 (2011). https://doi.org/10.1021/la202384b

Cited by

  1. Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength vol.51, pp.1, 2014, https://doi.org/10.4191/kcers.2014.51.1.019
  2. Highly-closed/-Open Porous Ceramics with Micro-Beads by Direct Foaming vol.53, pp.6, 2016, https://doi.org/10.4191/kcers.2016.53.6.604
  3. Alternative Process Routes to Manufacture Porous Ceramics—Opportunities and Challenges vol.12, pp.4, 2019, https://doi.org/10.3390/ma12040663
  4. ZrO2–TiO2 porous ceramics from particle stabilized wet foam by colloidal processing vol.124, pp.1, 2013, https://doi.org/10.2109/jcersj2.15170
  5. Highly porous SiC ceramics from particle-stabilized suspension vol.53, pp.2, 2017, https://doi.org/10.1007/s41779-017-0077-z
  6. External Field Assisted Freeze Casting vol.2, pp.1, 2013, https://doi.org/10.3390/ceramics2010018
  7. Recent Advances in Structured Catalysts Preparation and Use in Water-Gas Shift Reaction vol.9, pp.12, 2013, https://doi.org/10.3390/catal9120991
  8. Titania-Coated Alumina Foam Photocatalyst for Memantine Degradation Derived by Replica Method and Sol-Gel Reaction vol.13, pp.1, 2013, https://doi.org/10.3390/ma13010227
  9. Hierarchically porous lanthanum zirconate foams with low thermal conductivity from particle‐stabilized foams vol.103, pp.11, 2020, https://doi.org/10.1111/jace.17341
  10. Thermal properties of porous ceramics manufactured by direct foaming using silicon sludge and silica fume vol.9, pp.3, 2013, https://doi.org/10.1080/21870764.2021.1978651