DOI QR코드

DOI QR Code

Influence of the Binder Types on the Electrochemical Characteristics of Si-C Composites Electrode in LIBs

Si-C 복합체 전극의 바인더 종류에 따른 전기화학적 특성 변화

  • Jung, Sung-Hun (Advanced Material Engineering, Yonsei University) ;
  • Ji, Mijung (Electronic Materials Lab, Korea Institute of Ceramic Engineering & Technology) ;
  • Park, Geunyeong (Electronic Materials Lab, Korea Institute of Ceramic Engineering & Technology) ;
  • Hong, Jongill (Advanced Material Engineering, Yonsei University) ;
  • Choi, Byung-Hyun (Electronic Materials Lab, Korea Institute of Ceramic Engineering & Technology)
  • 정성헌 (연세대학교 신소재공학과) ;
  • 지미정 (한국세라믹기술원 전자소재팀) ;
  • 박근영 (한국세라믹기술원 전자소재팀) ;
  • 홍종일 (연세대학교 신소재공학과) ;
  • 최병현 (한국세라믹기술원 전자소재팀)
  • Received : 2013.02.26
  • Accepted : 2013.03.19
  • Published : 2013.03.31

Abstract

This work presents the effects of binders on the electrochemical performance of Si-C composites as the anode of lithium ion batteries. PAI (polyamide-imide) was used as an organic binder, and PAN (polyacrylonitrile), PAA (polyacrylic acid) and CMC + SBR (carboxymethyl cellulose + styrene-butadiene rubber) were used as aqueous binders. As a result, stabilization time for the cell with a Si-C composite anode synthesized using aqueous binders became shorter than an organic binder. Particularly in the case of the cell using PAA binder, better performance was observed in terms of adhesion strength, initial efficiency, the volume expansion ratio, Coulombic efficiency, and capacity retention.

Keywords

References

  1. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, and Z. Ogumi, "Carbon-Coated Si as a Lithium-Ion Battery Anode Material," J. Electrochem. Soc., 149 [12] A1598-1603 (2002). https://doi.org/10.1149/1.1518988
  2. H. Y. Lee and M. S. Lee, "Graphite-FeSi Alloy Composites as Anode Materials for Rechargeable Lithium Batteries," J. Power Sources, 112 [2] 649-54 (2002). https://doi.org/10.1016/S0378-7753(02)00461-5
  3. L. Chen, X. Xie, J. Xie, K. Wang, and J. Yang, "Binder Effect on Cycling Performance of Silicon/Carbon Composite Anodes for Lithium Ion Batteries," J. Appl. Electrochem., 36 [10] 1099-104 (2006). https://doi.org/10.1007/s10800-006-9191-2
  4. T. Hasegawa, S. R. Mukai, Y. Shirato, and H. Tamon, "Preparation of Carbon Gel Microspheres Containing Silicon Powder for Lithium Ion Battery Anodes," Carbon, 42 [12] 2573-79 (2004). https://doi.org/10.1016/j.carbon.2004.05.050
  5. H. Li, X. Huang, L. Chen, Z. Wu, and Y. Liang, "A High Capacity Nano Si Composite Anode Material for Lithium Rechargeable Batteries," Electrochem. Solid. St., 2 [11] 547-49. (1999). https://doi.org/10.1149/1.1390899
  6. Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, and Y. Takeda, "Morphology-Stable Silicon-Based Composite for Li-Intercalation," Solid State Ionics, 168 [1] 61-68 (2004). https://doi.org/10.1016/j.ssi.2004.01.031
  7. G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, "Structure and Lithium Insertion Properties of Carbon Nanotubes," J. Electrochem. Soc., 146 [5] 1696-701 (1999). https://doi.org/10.1149/1.1391828
  8. C. Wang, A. J. Appleby, and F. E. Little, "Electrochemical Study on Nano-Sn, $Li_{4.4}Sn$ and $AlSi_{0.1}$ Powders Used as Secondary Lithium Battery Anodes," J. Power Sources, 93 [1] 174-85 (2001). https://doi.org/10.1016/S0378-7753(00)00576-0
  9. Z. Chen, V. Chevrier, L. Christensen, and J. R. Dahn, "Design of Amorphous Alloy Electrodes for Li-Ion Batteries A Big Challenge," Electrochem. Solid-state Lett., 7 [10] A310-14 (2004). https://doi.org/10.1149/1.1792262
  10. N. S. Choi, K. H. Yew, W. U. Choi, and S. S. Kim, "Enhanced Electrochemical Properties of A Si-Based Anode Using An Electrochemically Active Polyamide Imide Binder," J. Power Sources, 177 [2] 590-94 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.082
  11. N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wohrle, C. Wurm, and M. Winter, "Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability," Electrochem. Solid-state Lett., 11 [5] A76-80 (2008). https://doi.org/10.1149/1.2888173
  12. J. H. Lee, H. H. Kim, S. B. Wee, and U. Paik, "Effect of Additives on the Dispersion Properties of Aqueous Based $C/LiFePO_4$ Paste and its Impact on Lithium Ion Battery High Power Properties," Kona Powder Partical J., 27 239-45 (2009). https://doi.org/10.14356/kona.2009022
  13. H. K. Park, B. S. Kong, and E. S. Oh, "Effect of High Adhesive Polyvinyl Alcohol Binder on the Anodes of Lithium Ion Batteries," Electrochem. Commun., 13 [10] 1051-53 (2011). https://doi.org/10.1016/j.elecom.2011.06.034
  14. L. Gong, M. H. T. Nguyen, and E. S. Oh, "High Polar Polyacrylonitrile as a Potential Binder for Negative Electrodes in Lithium Ion Batteries," Electrochem. Commun., 29 45-47 (2013). https://doi.org/10.1016/j.elecom.2013.01.010
  15. J. Li, R. Klopsch, M. C. Stan, S. Nowak, M. Kunze, M. Winter, and S. Passerini, "Synthesis and Electrochemical Performance of the High Voltage Cathode Material $Li[Li_{0.2}Mn_{0.56}Ni_{0.16}Co_{0.08}]O_2$ with Improved Rate Capability," J. Power Sources, 196 [10] 4821-25 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.006
  16. G. T. Kim, S. S. Jeong, M. Joost, E. Rocca, M. Winter, S. Passerini, and A. Balducci, "Use of Natural Binders and Ionic Liquid Electrolytes for Greener and Safer Lithium-Ion Batteries," J. Power Sources, 196 [4] 2187-94 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.080
  17. P. Zuo, G. Yin, and Y. Ma, "Electrochemical Stability of Silicon/ Carbon Composite Anode for Lithium Ion Batteries," Electrochem. Acta, 52 [15] 4878-83 (2007). https://doi.org/10.1016/j.electacta.2006.12.061
  18. J. Li, R. B. Lewis, and J. R. Dahn, "Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries," Electrochem. Solid-state Lett., 10 [2] A17-20 (2007). https://doi.org/10.1149/1.2398725
  19. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, and G. Yushin, "Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid," ACS Appl. Mater. Interfaces, 2 [11] 3004-10 (2010). https://doi.org/10.1021/am100871y
  20. B. R. Lee and E. S. Oh, "Effect of Molecular Weight and Degree of Substitution of a Sodium-Carboxymethyl Cellulose Binder on $Li_4Ti_5O_{12}$ Anodic Performance," J. Phys. Chem. C, 117 [9] 4404-09 (2013).
  21. Z. J. Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui, and S. Komaba, "High-Capacity Si-Graphite Composite Electrodes with A Self-Formed Porous Structure by a Partially Neutralized Polyacrylate for Li-Ion Batteries," Energ. Environ. Sci., 5 [10] 9014-20 (2012). https://doi.org/10.1039/c2ee22292b

Cited by

  1. Synthesis of ZnNiSnO4 nanorods by a simple hydrothermal method as a new anode material for Li ion battery vol.711, pp.None, 2013, https://doi.org/10.1016/j.jallcom.2017.04.011
  2. High Porosity Single-Phase Silicon Negative Electrode Made with Phase-Inversion vol.168, pp.4, 2013, https://doi.org/10.1149/1945-7111/abe3f1