DOI QR코드

DOI QR Code

Oxidative stress and the antioxidant enzyme system in the developing brain

  • Shim, So-Yeon (Division of Neonatology, Department of Pediatrics, Ewha Womans University Mokdong Hospital) ;
  • Kim, Han-Suk (Division of Neonatology, Department of Pediatrics, Seoul National University College of Medicine)
  • Received : 2012.07.11
  • Accepted : 2012.12.17
  • Published : 2013.03.15

Abstract

Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS) play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide ($O2^{\cdot-}$), hydroxyl radical ($OH^{\cdot}$), and hydrogen peroxide ($H_2O_2$). Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx), is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.

Keywords

References

  1. Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 2001;50:553-62. https://doi.org/10.1203/00006450-200111000-00003
  2. Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res 2009;66:121-7. https://doi.org/10.1203/PDR.0b013e3181a9eafb
  3. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 1994;344:721-4. https://doi.org/10.1016/S0140-6736(94)92211-X
  4. Saugstad OD. Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease. Acta Paediatr 1996;85:1-4.
  5. Sarker AH, Watanabe S, Seki S, Akiyama T, Okada S. Oxygen radical-induced single-strand DNA breaks and repair of the damage in a cell-free system. Mutat Res 1995;337:85-95. https://doi.org/10.1016/0921-8777(95)00012-9
  6. Perrone S, Negro S, Tataranno ML, Buonocore G. Oxidative stress and antioxidant strategies in newborns. J Matern Fetal Neonatal Med 2010;23 Suppl 3:63-5. https://doi.org/10.3109/14767058.2010.509940
  7. Aspberg A, Tottmar O. Development of antioxidant enzymes in rat brain and in reaggregation culture of fetal brain cells. Brain Res Dev Brain Res 1992;66:55-8. https://doi.org/10.1016/0165-3806(92)90139-N
  8. Shivakumar BR, Anandatheerthavarada HK, Ravindranath V. Free radical scavenging systems in developing rat brain. Int J Dev Neurosci 1991;9:181-5. https://doi.org/10.1016/0736-5748(91)90010-J
  9. Folkerth RD, Haynes RL, Borenstein NS, Belliveau RA, Trachtenberg F, Rosenberg PA, et al. Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J Neuropathol Exp Neurol 2004;63: 990-9. https://doi.org/10.1093/jnen/63.9.990
  10. Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 1994;269:27670-8.
  11. Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 1999;45:101-12. https://doi.org/10.1016/S0168-8227(99)00037-6
  12. Manevich Y, Sweitzer T, Pak JH, Feinstein SI, Muzykantov V, Fisher AB. 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proc Natl Acad Sci U S A 2002;99:11599-604. https://doi.org/10.1073/pnas.182384499
  13. Pak JH, Manevich Y, Kim HS, Feinstein SI, Fisher AB. An antisense oligonucleotide to 1-cys peroxiredoxin causes lipid peroxidation and apoptosis in lung epithelial cells. J Biol Chem 2002; 277:49927-34. https://doi.org/10.1074/jbc.M204222200
  14. Miller SL, Wallace EM, Walker DW. Antioxidant therapies: a potential role in perinatal medicine. Neuroendocrinology 2012;96:13-23. https://doi.org/10.1159/000336378
  15. Buonocore G, Perrone S, Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med 2010;15:186-90. https://doi.org/10.1016/j.siny.2010.04.003
  16. Buonocore G, Perrone S, Bracci R. Free radicals and brain damage in the newborn. Biol Neonate 2001;79:180-6. https://doi.org/10.1159/000047088
  17. Mavelli I, Rigo A, Federico R, Ciriolo MR, Rotilio G. Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem J 1982;204:535-40. https://doi.org/10.1042/bj2040535
  18. Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol 1998; 10:248-53. https://doi.org/10.1016/S0955-0674(98)80147-6
  19. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 2005;17:183-9. https://doi.org/10.1016/j.ceb.2005.02.004
  20. Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 1995;18:775- https://doi.org/10.1016/0891-5849(94)00198-S
  21. Rodrigo J, Fernandez AP, Serrano J, Peinado MA, Martínez A. The role of free radicals in cerebral hypoxia and ischemia. Free Radic Biol Med 2005;39:26-50. https://doi.org/10.1016/j.freeradbiomed.2005.02.010
  22. Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med 2010;15:191-5. https://doi.org/10.1016/j.siny.2010.04.001
  23. Land SC. Oxygen-sensing pathways and the development of mammalian gas exchange. Redox Rep 2003;8:325-40. https://doi.org/10.1179/135100003225003348
  24. Hoang VM, Foulk R, Clauser K, Burlingame A, Gibson BW, Fisher SJ. Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 2001;40: 4077-86. https://doi.org/10.1021/bi0023910
  25. Ozawa H, Takashima S. Immunocytochemical development of transferrin and ferritin immunoreactivity in the human pons and cerebellum. J Child Neurol 1998;13:59-63. https://doi.org/10.1177/088307389801300203
  26. van Meer G. Transport and sorting of membrane lipids. Curr Opin Cell Biol 1993;5:661-73. https://doi.org/10.1016/0955-0674(93)90137-F
  27. Adamo AM, Aloise PA, Pasquini JM. A possible relationship between concentration of microperoxisomes and myelination. Int J Dev Neurosci 1986;4:513-7. https://doi.org/10.1016/0736-5748(86)90003-1
  28. Kim HS, Kang SW, Rhee SG, Clerch LB. Rat lung peroxiredoxins I and II are differentially regulated during development and by hyperoxia. Am J Physiol Lung Cell Mol Physiol 2001;280:L1212-7. https://doi.org/10.1152/ajplung.2001.280.6.L1212
  29. Kim HS, Pak JH, Gonzales LW, Feinstein SI, Fisher AB. Regulation of 1-cys peroxiredoxin expression in lung epithelial cells. Am J Respir Cell Mol Biol 2002;27:227-33. https://doi.org/10.1165/ajrcmb.27.2.20010009oc
  30. Kim HS, Manevich Y, Feinstein SI, Pak JH, Ho YS, Fisher AB. Induction of 1-cys peroxiredoxin expression by oxidative stress in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L363-9. https://doi.org/10.1152/ajplung.00078.2003
  31. Shim SY, Kim HS, Kim EK, Choi JH. Expression of peroxiredoxin 1, 2, and 6 in the rat brain during perinatal development and in response to dexamethasone. Free Radic Res 2012;46:231-9. https://doi.org/10.3109/10715762.2011.649749
  32. Mizusawa H, Ishii T, Bannai S. Peroxiredoxin I (macrophage 23 kDa stress protein) is highly and widely expressed in the rat nervous system. Neurosci Lett 2000;283:57-60. https://doi.org/10.1016/S0304-3940(00)00910-1
  33. Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 1998;18:6241-53.
  34. Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Nonprotein- bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res 2001;49:208-12. https://doi.org/10.1203/00006450-200102000-00013
  35. Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxiaischemia in the developing brain. Free Radic Biol Med 2006;40: 388-97. https://doi.org/10.1016/j.freeradbiomed.2005.08.040
  36. Reiter RJ, Tan DX. Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res 2003;58:10-9. https://doi.org/10.1016/S0008-6363(02)00827-1
  37. Reiter RJ, Tan DX, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. A review. J Biomed Sci 2000;7:444-58. https://doi.org/10.1007/BF02253360
  38. Palmer C, Towfighi J, Roberts RL, Heitjan DF. Allopurinol administered after inducing hypoxia-ischemia reduces brain injury in 7-day-old rats. Pediatr Res 1993;33(4 Pt 1):405-11.
  39. Russell GA, Cooke RW. Randomised controlled trial of allopurinol prophylaxis in very preterm infants. Arch Dis Child Fetal Neonatal Ed 1995;73:F27-31. https://doi.org/10.1136/fn.73.1.F27
  40. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med 2007;43:4-15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024
  41. Mandl J, Szarka A, Bánhegyi G. Vitamin C: update on physiology and pharmacology. Br J Pharmacol 2009;157:1097-110. https://doi.org/10.1111/j.1476-5381.2009.00282.x
  42. Nakai A, Shibazaki Y, Taniuchi Y, Oya A, Asakura H, Koshino T, et al. Vitamins ameliorate secondary mitochondrial failure in neonatal rat brain. Pediatr Neurol 2002;27:30-5. https://doi.org/10.1016/S0887-8994(02)00383-1
  43. Tyson JE, Wright LL, Oh W, Kennedy KA, Mele L, Ehrenkranz RA, et al. Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med 1999;340:1962-8. https://doi.org/10.1056/NEJM199906243402505
  44. Tin W, Wiswell TE. Drug therapies in bronchopulmonary dysplasia: debunking the myths. Semin Fetal Neonatal Med 2009;14:383-90. https://doi.org/10.1016/j.siny.2009.08.003
  45. Parad RB, Allred EN, Rosenfeld WN, Davis JM. Reduction of retinopathy of prematurity in extremely low gestational age newborns treated with recombinant human Cu/Zn superoxide dismutase. Neonatology 2012;102:139-44. https://doi.org/10.1159/000336639

Cited by

  1. Glutathionylated γG and γA subunits of hemoglobin F: a novel post‐translational modification found in extremely premature infants by LC‐MS and nanoLC‐MS/MS vol.49, pp.2, 2013, https://doi.org/10.1002/jms.3326
  2. Prenatal vitamin C deficiency results in differential levels of oxidative stress during late gestation in foetal guinea pig brains vol.2, pp.None, 2014, https://doi.org/10.1016/j.redox.2014.01.009
  3. Peroxiredoxin 2 is involved in vasculogenic mimicry formation by targeting VEGFR2 activation in colorectal cancer vol.32, pp.1, 2013, https://doi.org/10.1007/s12032-014-0414-9
  4. Oxidative Stress and ADHD : A Meta-Analysis vol.19, pp.11, 2013, https://doi.org/10.1177/1087054713510354
  5. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/1543809
  6. Antioxidation Effect of Simvastatin in Aorta and Hippocampus: A Rabbit Model Fed High-Cholesterol Diet vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/6929306
  7. Delivery of a protein transduction domain-mediated Prdx6 protein ameliorates oxidative stress-induced injury in human and mouse neuronal cells vol.310, pp.1, 2013, https://doi.org/10.1152/ajpcell.00229.2015
  8. Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia vol.31, pp.3, 2013, https://doi.org/10.1007/s12640-017-9700-6
  9. Ischemic Retinopathies: Oxidative Stress and Inflammation vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/3940241
  10. Peroxiredoxin‐2 up‐regulation in inflammatory bowel disease: Friend or foe? vol.32, pp.6, 2017, https://doi.org/10.1111/jgh.13664
  11. Neuroprotective effects of allicin on ischemia-reperfusion brain injury vol.8, pp.61, 2013, https://doi.org/10.18632/oncotarget.22355
  12. Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress vol.14, pp.None, 2013, https://doi.org/10.1186/s12974-017-0965-8
  13. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease vol.9, pp.None, 2018, https://doi.org/10.3389/fphys.2018.00602
  14. Oxidative Stress in the Newborn Period: Useful Biomarkers in the Clinical Setting vol.7, pp.12, 2013, https://doi.org/10.3390/antiox7120193
  15. Effects of selenium administration on oxidative stress in the lungs of mice exposed to pyrolysis oil vapours vol.12, pp.6, 2018, https://doi.org/10.1080/16583655.2018.1495409
  16. Effects of ascorbic acid treatment on developmental alterations in calcium-binding proteins and gamma-aminobutyric acid transporter 1 in the cerebellum of lead-exposed rats during pregnancy and lactat vol.44, pp.11, 2013, https://doi.org/10.2131/jts.44.799
  17. Dentate Gyrus Peroxiredoxin 6 Levels Discriminate Aged Unimpaired From Impaired Rats in a Spatial Memory Task vol.11, pp.None, 2013, https://doi.org/10.3389/fnagi.2019.00198
  18. Experimental and Computational Studies to Characterize and Evaluate the Therapeutic Effect of Albizia lebbeck (L.) Seeds in Alzheimer’s Disease vol.55, pp.5, 2019, https://doi.org/10.3390/medicina55050184
  19. Post-mortem interval estimative through determination of catalase and Δ-aminolevulinate dehydratase activities in hepatic, renal, skeletal muscle and cerebral tissues of Swiss mice vol.24, pp.5, 2013, https://doi.org/10.1080/1354750x.2019.1619837
  20. Fucoxanthin-Rich Brown Algae Extract Improves Male Reproductive Function on Streptozotocin-Nicotinamide-Induced Diabetic Rat Model vol.20, pp.18, 2019, https://doi.org/10.3390/ijms20184485
  21. Effects of selenium supplementation on lung oxidative stress after exposure to exhaust emissions from pyrolysis oil, biodiesel and diesel vol.29, pp.8, 2013, https://doi.org/10.1080/15376516.2019.1636441
  22. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites vol.39, pp.6, 2019, https://doi.org/10.1002/med.21592
  23. The Role of Redox Dysregulation in the Effects of Prenatal Stress on Embryonic Interneuron Migration vol.29, pp.12, 2013, https://doi.org/10.1093/cercor/bhz052
  24. Plasma Oxidative Status in Preterm Infants Receiving LCPUFA Supplementation: A Pilot Study vol.12, pp.1, 2013, https://doi.org/10.3390/nu12010122
  25. Use of Melatonin in Oxidative Stress Related Neonatal Diseases vol.9, pp.6, 2020, https://doi.org/10.3390/antiox9060477
  26. A Mechanistic Evaluation of Antioxidant Nutraceuticals on Their Potential against Age-Associated Neurodegenerative Diseases vol.9, pp.10, 2013, https://doi.org/10.3390/antiox9101019
  27. Identifying a Role of Red and White Wine Extracts in Counteracting Skin Aging: Effects of Antioxidants on Fibroblast Behavior vol.10, pp.2, 2013, https://doi.org/10.3390/antiox10020227
  28. Morin treatment for acute ethanol exposure in rats vol.96, pp.3, 2013, https://doi.org/10.1080/10520295.2020.1785548
  29. Oxidative reactivity across kingdoms in the gut: Host immunity, stressed microbiota and oxidized foods vol.178, pp.None, 2013, https://doi.org/10.1016/j.freeradbiomed.2021.11.009