DOI QR코드

DOI QR Code

Comparison of Wave Pressure Acting on the Front Wall According to the Porosity of Caisson Breakwater Having the Cap of Wave Chamber

유수실 상부 덮개가 있는 케이슨 방파제의 유공률에 따른 전면벽 작용 파압 비교

  • Received : 2012.08.12
  • Accepted : 2013.02.07
  • Published : 2013.03.30

Abstract

This study experimentally investigated the change in distribution of wave pressure on the front wall according to the variation of the front wall porosity of the caisson breakwater having the cap of wave chamber. First, the wave pressure for the non-porous caissson corresponding to zero porosity was measured and compared with the pressure formula suggested by Goda(1974). The analysis showed that the measured pressure distribution fairly well agreed with the Goda formula, which confirmed the accurate measurement of wave pressure in the present experiment. In case of the porous caisson, meanwhile, the experiment was performed by varying the front wall porosity as 0.2, 0.25, and 0.3. The wave pressure distribution at the front wall showed little difference according to the porosity for most of the test wave conditions, whereas the pressure slightly increased with the porosity for some test waves whose wave heights and periods were relatively large. However, the difference according to the porsosity was insignificant for the wave force at the front wall.

본 연구에서는 유수실 상부 덮개가 있는 케이슨 방파제의 전면벽 유공률 변화에 따라서 전면벽 파압 분포가 어떻게 달라지는지 실험적으로 고찰하였다. 우선 전면벽 유공률이 0인 무공 케이슨에 대해서 파압을 측정하여 이를 Goda(1974)의 파압 분포와 비교하였다. 분석 결과, 계측된 파압분포는 Goda의 파압 공식과 대체로 잘 일치하였으며, 이를 통해서 본 실험에서 파압이 정확하게 측정되었음을 확인하였다. 한편, 유공 케이슨의 경우 전면벽 유공률을 0.2, 0.25, 0.3으로 변화시키면서 실험을 수행하였다. 대부분의 실험 조건에서는 유공률에 따른 전면벽 파압 분포에 차이가 거의 없었던 반면, 비교적 파고 및 주기가 큰 일부 실험파의 경우에는 유공률이 클수록 파압이 근소하게 증가하는 경향이 나타났다. 그러나 전면벽 총파력은 대체로 유공률에 따른 차이가 미미하였다.

Keywords

References

  1. Chen, X., Li, Y., and Teng, B. (2007). Numerical and simplified methods for the calculation of the total horizontal wave force on a perforated caisson with a top cover. Coast. Engrg., Vol. 54, pp. 67-75. https://doi.org/10.1016/j.coastaleng.2006.08.002
  2. Chun, I. S., Park, W. S., and Lee, D. S. (1993). "Pressure distribution and caisson stability of perforated breakwaters." J. Korean Soc. Coast. Oc. Engrs., Vol. 5, No. 2, pp. 66-75 (in Korean).
  3. Cuomo, G., Allsop, W., Bruce, T. and Pearson, J. (2010a). "Breaking wave loads at vertical seawalls and breakwaters." Coast. Engrg., Vol. 57, pp. 424-439. https://doi.org/10.1016/j.coastaleng.2009.11.005
  4. Cuomo, G., Allsop, W., and Takahashi, S. (2010b). "Scaling wave impact pressures on vertical walls." Coast. Engrg., Vol. 57, pp. 604-609. https://doi.org/10.1016/j.coastaleng.2010.01.004
  5. De Gerloni, M. (1998). Forces on perforated structures: Proposal for a Goda modified formula. MAST III-PROVERBS-CT95-0041 Overall Workshop, Grenoble, France (in French).
  6. Fugazza, M. and Natale, L. (1992). "Hydraulic design of perforated breakwaters." J. Wtrwy, Port, Coast. Oc. Engrg. Vol. 118, No. pp. 1, 1-14. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(1)
  7. Goda, Y. (1974). "New wave pressure formula for composite breakwaters." Proc. 14th Int. Conf. Coast. Engrg., ASCE, pp. 1702-1720.
  8. Jarlan, G.E. (1961). "A perforated vertical wall breakwater." The Dock and Harbor Auth., Vol. XII, No. 486, pp. 394-398.
  9. Kakuno, S., Oda, K., and Liu, P.L.F. (1992). "Scattering of water waves by vertical cylinders with a backwall." Proc. 23th Int. Conf. Coast. Engrg. ASCE, pp. 1258-1271.
  10. Korea Institute of Construction Technology (2000). Wave Reflection of Perforated-Wall Caisson Breakwaters (in Korean).
  11. Liu, Y., Li, Y., Teng, B., Jiang, J., and Ma, B. (2008). "Total horizontal and vertical forces of irregular waves on partially perforated caisson breakwaters." Coast. Engrg., Vol. 55, pp. 537-552. https://doi.org/10.1016/j.coastaleng.2008.02.005
  12. Huang, Z., Li, Y. and Liu, Y. (2011) "Hydraulic performance and wave loadings of perforated/slotted coastal structures: A review." Ocean Engrg., Vol. 38, pp. 1031-1053. https://doi.org/10.1016/j.oceaneng.2011.03.002
  13. Park, W. S., Chun, I. S., and Lee, D. S. (1993). "Hydraulic experiments for the reflection characteristics of perforated breakwaters." J. Korean Soc. Coast. Oc. Engrs., Vol. 5, No. 3, pp. 198-203 (in Korean).
  14. Tabet-Aoul, E. and Lambert, E. (2003). "Tentative new formula for maximum horizontal wave forces acting on perforated caisson." J. Wtrwy., Port, Coast. and Oc. Engrg., Vol. 129, No. 1, pp. 34-40. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:1(34)
  15. Takahashi, S., Shimosako, K., and Sasaki, H. (1991). "Experimental study on wave forces acting on perforated wall caisson breakwaters." Report of P.H.R.I., Vol. 30, No. 4, pp. 3-34 (in Japanese).
  16. Takahashi, S., Tanimoto, K., and Shimosako, K. (1993). "Experimental study on impulsive pressures on composite breakwaters." Report of P.H.R.I., Vol. 31, No. 5, pp. 33-72 (in Japanese).
  17. Takahashi, S. and Shimosako, K. (1994). "Wave pressure on a perforated wall caisson." Proc. Int. Conf. Hydro-tech. Eng. Port and Harbor Const. (HYDRO-PORT '94), pp. 747-764.
  18. Tanimoto, K. and Takahashi, S. (1994). "Design and construction of caisson breakwaters-the Japanese experience." Coast. Engrg., Vol. 22, pp. 57-77. https://doi.org/10.1016/0378-3839(94)90048-5
  19. van der Meer, J.W., d'Angremond, K., and Juhl, J. (1994). "Probabilistic calculations of wave forces on vertical structures." Proc. 24th Int. Conf. Coast. Engrg., ASCE, pp. 1754-1767.
  20. Zhu, D. and Zhu, S. (2010). "Impedance analysis of hydrodynamic behaviors for a perforated-wall caisson breakwater under regular wave orthogonal attack." Coast. Engrg. Vol. 57, pp. 722-731. https://doi.org/10.1016/j.coastaleng.2010.03.001

Cited by

  1. Influence of Wave Chamber Slab on Wave Pressure on First and Second Wall of Perforated Caisson Breakwater vol.33, pp.6, 2013, https://doi.org/10.12652/Ksce.2013.33.6.2317