DOI QR코드

DOI QR Code

Computational Fluid Dynamic(CFD) Analysis-based Feasibility Study on Wind Power Generation due to Traveling Vehicles on Highway

전산유체역학해석을 통한 고속도로 주행차량 유도풍의 풍력발전 적용 가능성에 관한 연구

  • 전제연 (성균관대학교 u-City 공학과) ;
  • 한관문 (한국유지관리(주) ES사업부) ;
  • 송종섭 ((주)유피오) ;
  • 박승희 (성균관대학교 사회환경시스템공학과)
  • Received : 2012.09.27
  • Accepted : 2012.12.31
  • Published : 2013.03.30

Abstract

In this study, analytical works for the induced winds due to traveling vehicles on highway have been conducted by Computation Fluid Dynamics (CFD). The traveling condition was considered in two cases: (a) single direction and (b) bi-direction. The analysis was focused on the effects of the induced winds on the upper part of a median strip while the aerodynamic characteristics of the vehicles were directly analyzed in the previous studies. From the analysis results, it has been found that the maximum magnitude of the induced winds was 2.2 m/s when the vehicles travel with the speed of 50 km/h. Additionally, 4.0 m/s and 5.3 m/s were obtained with the speed of 90 km/h and 120 km/h, respectively. Especially, the induced winds was generated about 84% of the vehicle speed at 1.0 m above from the median strip when the vehicles travel with the speed of 120 km/h. The induced winds was maintained during the very short period while the traveling. conclusively, it is noted that the wind power generation can be possible by using the small-sized wind power generators installed on median strips throughout the analytical results in this study.

본 연구에서는 고속도로 주행차량에 의해 인공적으로 발생하는 유도풍 해석을 CFD(Computation Fluid Dynamics)를 활용하여 수행하였다. 차량의 주행은 단독주행과 양방향으로 교행하는 경우에 대하여 해석을 하였으며, 차량의 공기역학적 특성보다는 중앙분리대 상부에 형성되는 유도풍에 집중하여 해석을 수행하였다. 주행차량의 유도풍 해석 결과 주행속도 50km/h인 경우 유도풍의 크기는 최대 2.2m/s, 90km/h는 4.0m/s, 120km/h는 5.3m/s인 것으로 검토되었으며, 차량주행속도 120km/h(33.3m/s)에 비해 약 2.0m 이격된 중앙분리대 상부 1.0m에서는 5.3m/s로 약 84%의 약화된 유도풍이 작용하였다. 차량의 유도풍은 차량이 통과하는 아주 짧은 시간만 유지되었다. 본 연구에서 주행차량의 유도풍 크기 분석을 통해 소형풍력기를 이용한 풍력발전이 가능할 것으로 판단되었다.

Keywords

References

  1. Barlow, J.B., Guterres, R., Ranzenbach, R. (1999), "Rectangular Bodies With Radiused Edges in Ground Effect", AIAA Paper No.99-3153.
  2. Choi, J.H., Lee, S.J. (1996), "Experimental Study on the Drag Reduction of Ground Vehicles Using a Rear=Spolier", SAE No.96370047.
  3. Cooper, K.R. (1985), "The Effect of Front-Edge Rounding and Rear Edge Shaping on the Aerodynamic Drag of Bluff Vehicles in Ground Proximity", SAE paper No.850288.
  4. Fluent 6.3.26 User's manual (2006).
  5. Hucho, W.H., Janssen, L.J., Emmelmann, H.J. (1976), "The Optimization of Body Details-A Method for Reducing the aerodynamic Drag of Road Vehicles", SAE paper No.760185.
  6. Kim, M.H., Kuk, J.Y., Chyun, I.B. (2003), "A Numerical Investigation on Wake Flow Characteristics and Rear-Spoiler Effect of a Large-Sized Bus Body", KSAE, Vol. 11, No. 2, pp. 126-133.
  7. Kim, H.G, Woo, S.W, Jang, M.S, Shin, H.K. (2008) Computational Flow Analysis on Applicability of Vehicle-Induced Wind to Highway to Wind Power Generation, Journal of The Korean Society For New And Renewable Energy, The Korean Society For New And Renewable Energy, Vol. 4, No. 4, pp. 30-36 (in Korean).
  8. MetropolisMag.com, "Mark Oberholzer exploers the urban highway's potential for wind power", http://www.metropolismag.com
  9. Ryu, J.W., Cho., S.K., Yang, J.M., Choi, H.C., Yoo, J.Y., Lee, J.S. (1996), "Effect of Underbody Shape of Road Vehicles on Drag and Lift", SAE No.96370012.
  10. Today.com, "Design student invents radical highway wind turbines", http://www.archinect.com/schoolblog/

Cited by

  1. Characteristics of a Filter Module Adsorption for Fine Dust Removal on Road vol.39, pp.1, 2017, https://doi.org/10.4491/KSEE.2017.39.1.19