DOI QR코드

DOI QR Code

The Butanol Fraction of Bitter Melon (Momordica charantia) Scavenges Free Radicals and Attenuates Oxidative Stress

  • Kim, Hyun Young (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Sin, Seung Mi (Department of Food Science and Nutrition, Pusan National University) ;
  • Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University) ;
  • Cho, Kye Man (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2012.10.26
  • Accepted : 2013.01.10
  • Published : 2013.03.31

Abstract

To investigate radical scavenging effects and protective activities of bitter melon (Momordica charantia) against oxidative stress, in vitro and a cellular system using LLC-$PK_1$ renal epithelial cells were used in this study. The butanol (BuOH) fraction of bitter melon scavenged 63.4% and 87.1% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals at concentrations of 250 and $500{\mu}g/mL$, respectively. In addition, the BuOH fraction of bitter melon effectively scavenged hydroxyl radicals (${\cdot}OH$). At all concentrations tested, the scavenging activity of the BuOH fraction was more potent than that of the positive control, ascorbic acid. Furthermore, under the LLC-$PK_1$ cellular model, the cells showed a decline in viability and an increase in lipid peroxidation through oxidative stress induced by pyrogallol, a generator of superoxide anion ($O_2{^-}$). However, the BuOH fraction of bitter melon significantly and dose-dependently inhibited cytotoxicity. In addition, 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite ($ONOO^-$) formed by simultaneous releases of nitric oxide and $O_2{^-}$, caused cytotoxicity in the LLC-$PK_1$ cells while the BuOH fraction of bitter melon ameliorated oxidative damage induced by $ONOO^-$. These results indicate that BuOH fraction of bitter melon has protective activities against oxidative damage induced by free radicals.

Keywords

References

  1. Halliwell B, Gutteridge JMC, Cross CE. 1992. Free radicals, antioxidants, and human disease: Where are we now? J Lab Clin Med 119: 598-620.
  2. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mawur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  3. Bokov A, Chaudhuri A, Richardson A. 2004. The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811-826. https://doi.org/10.1016/j.mad.2004.07.009
  4. Gibson GE, Huang HM. 2005. Oxidative stress in Alzheimer's disease. Neurobiol Aging 26: 575-578. https://doi.org/10.1016/j.neurobiolaging.2004.07.017
  5. Scott JA, King GL. 2004. Oxidative stress and antioxidant treatment in diabetes. Ann NY Acad Sci 1031: 204-213. https://doi.org/10.1196/annals.1331.020
  6. Yu BP, Chung HY. 2001. Oxidative stress and vascular aging. Diabetes Res Clin Pract 54: S73-S80. https://doi.org/10.1016/S0168-8227(01)00338-2
  7. Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90: 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  8. Meydani M, Lipman RD, Han SN, Wu D, Beharka A, Martin KR, Bronson R, Cao G, Smith D, Meydani SN. 1998. The effect of long-term dietary supplementation with antioxidants. Ann NY Acad Sci 854: 352-360. https://doi.org/10.1111/j.1749-6632.1998.tb09915.x
  9. Steinmetz KA, Potter JD. 1996. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc 96: 1027-1039. https://doi.org/10.1016/S0002-8223(96)00273-8
  10. Lee SY, Eom SH, Kim YK, Park NI, Park SU. 2009. Cucurbitane-type triterpenoids in Momordica charantia Linn. J Med Plants Res 3: 1264-1269.
  11. Leatherdale BA, Panesar RK, Singh G, Atkins TW, Bailey CJ, Bignell AHC. 1981. Improvement in glucose tolerance due to Momordica charantia (karela). BMJ 282: 1823-1824. https://doi.org/10.1136/bmj.282.6279.1823
  12. Anila L, Vijayalakshmi NR. 2000. Beneficial effects of flavonoids from Sesamum indicum, Emblica officinalis and Momordica charantia. Phytother Res 14: 592-595. https://doi.org/10.1002/1099-1573(200012)14:8<592::AID-PTR772>3.0.CO;2-#
  13. Lotikar MM, Rajarama Rao MR. 1966. Pharmacology of a hypoglyceamic principle isolated from the fruit of Momordica charantia Linn. Indian J Pharm Sci 28: 129-132.
  14. Grover JK, Yadav SP. 2004. Pharmacological actions and potential uses of Momordica charantia: A review. J Ethnopharmacol 93: 123-132. https://doi.org/10.1016/j.jep.2004.03.035
  15. Sin SM, Mok SY, Lee SH, Cho KM, Cho EJ, Kim HY. 2011. Protective effect of bitter melon (Momordica charantia) against oxidative stress. Cancer Prev Res 16: 86-92.
  16. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T. 1989. Effects of the interaction of tannins with co-existing substances. VI.Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37: 2016-2021. https://doi.org/10.1248/cpb.37.2016
  17. Gutteridge JM. 1987. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J 243: 709-714. https://doi.org/10.1042/bj2430709
  18. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22: 375-383. https://doi.org/10.3109/10715769509145649
  19. Lin JM, Lin CC, Chen MF, Ujiie T, Takada A. 1995. Scavenging effects of Mallotus repandus on active oxygen species. J Ethnopharmacol 46: 175-181. https://doi.org/10.1016/0378-8741(95)01246-A
  20. Halliwell B, Gutteridge JM. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14. https://doi.org/10.1042/bj2190001
  21. Zhang D, Yasuda T, Yu Y, Zheng P, Kawabata T, Ma Y, Okada S. 1996. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation. Free Radic Biol Med 20:145-150. https://doi.org/10.1016/0891-5849(95)02020-9
  22. Yokozawa T, Rhyu DY, Cho EJ. 2003. Protection by the Chinese prescription Wen-Pi-Tang against renal tubular LLC-PK1 cell damage induced by 3-morpholinosydnonimine. J Pharm Pharmacol 55: 1405-1412. https://doi.org/10.1211/0022357021783
  23. Piao XL, Kim HY, Yokozawa T, Lee YA, Piao XS, Cho EJ. 2005. Protective effects of broccoli (Brassica oleracea) and its active components against radical-induced oxidative damage. J Nutr Sci Vitaminol 51: 142-147. https://doi.org/10.3177/jnsv.51.142
  24. Yokozawa T, Satoh A, Cho EJ, Kashiwada Y, Ikeshiro Y. 2005. Protective role of Coptidis Rhizoma alkaloids against peroxynitrite-induced damage to renal tubular epithelial cells. J Pharm Pharmacol 57: 367-374. https://doi.org/10.1211/0022357055470
  25. Beckman JS, Koppenol WH. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271: 1424-1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  26. Ischiropoulos H. 1998. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 356: 1-11. https://doi.org/10.1006/abbi.1998.0755
  27. Nakazawa H, Fukuyama N, Takizawa S, Tsuji C, Yoshitake M, Ishida H. 2000. Nitrotyrosine formation and its role in various pathological conditions. Free Radic Res 33: 771-784. https://doi.org/10.1080/10715760000301291
  28. Ceriello A, Mercuri F, Quagliaro L, Assaloni R, Motz E, Tonutti L, Taboga C. 2001. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia 44:834-838. https://doi.org/10.1007/s001250100529
  29. Singh RJ, Hogg N, Joseph J, Konorev E, Kalyanaraman B. 1999. The peroxynitrite generator, SIN-1, becomes a nitric oxide donor in the presence of electron acceptors. Arch Biochem Biophys 361: 331-339. https://doi.org/10.1006/abbi.1998.1007
  30. Oishi Y, Sakamoto T, Udagawa H, Taniguchi H, Kobayashi- Hattori K, Ozawa Y, Takita T. 2007. Inhibition of increases in blood glucose and serum neutral fat by Momordica charantia saponin fraction. Biosci Biotechnol Biochem 71: 735-740. https://doi.org/10.1271/bbb.60570
  31. Kobori M, Nakayama H, Fukushima K, Ohnishi-Kameyama M, Ono H, Fukushima T, Akimoto Y, Masumoto S, Yukizaki C, Hoshi Y, Deguchi T, Yoshida M. 2008. Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses. J Agric Food Chem 56: 4004-4011. https://doi.org/10.1021/jf800052y

Cited by

  1. Characterization of a Soluble Phosphatidic Acid Phosphatase in Bitter Melon (Momordica charantia) vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0106403
  2. Free Radical Scavenging Effect and Oxidative Stress Protective Activity of Domestic Processed Polygoni Multiflori Radix vol.44, pp.6, 2015, https://doi.org/10.3746/jkfn.2015.44.6.809
  3. Food prospects and nutraceutical attributes of Momordica species: A potential tropical bioresources – A review vol.3, pp.3-4, 2014, https://doi.org/10.1016/j.fshw.2014.07.001
  4. Phytochemical profile and biological activities of Momordica charantia L. (Cucurbitaceae): A review vol.17, pp.27, 2018, https://doi.org/10.5897/AJB2017.16374
  5. Characteristics and Antioxidant Effect of Garlic in the Fermentation of Cheonggukjang by Bacillus amyloliquefaciens MJ1-4 vol.24, pp.7, 2013, https://doi.org/10.4014/jmb.1310.10065
  6. Radical Scavenging Activities of Tannin Extracted from Amaranth (Amaranthus caudatus L.) vol.25, pp.6, 2013, https://doi.org/10.4014/jmb.1409.09088
  7. Momordica charantia , a Nutraceutical Approach for Inflammatory Related Diseases vol.10, pp.None, 2019, https://doi.org/10.3389/fphar.2019.00486