DOI QR코드

DOI QR Code

Anti-inflammatory Effect of Oyster Shell Extract in LPS-stimulated Raw 264.7 Cells

  • Lee, Se-Young (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Hak-Ju (Seojin Boitech Co. Ltd.) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2012.12.12
  • Accepted : 2013.01.15
  • Published : 2013.03.31

Abstract

This study was designed to investigate the anti-inflammatory effect of oyster shell extract on the production of pro-inflammatory factors [NO, reactive oxygen species (ROS), nuclear factor-kappa B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2)] and pro-inflammatory cytokines [Interleukin-$1{\beta}$ (IL-$1{\beta}$), Interleukin-6 (IL-6) and TNF-${\alpha}$] in the lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. Cell viability, as measured by the MTT assay, showed that oyster shell extract had no significant cytotoxicity in Raw 264.7 cells. The treatment with oyster shell extract decreased the generation of intracellular reactive oxygen species dose dependently and increased antioxidant enzyme activities, such as SOD, catalase, GSH-px in LPS-stimulated macrophage cells. Oyster shell extract significantly suppressed the production of NO and also decreased the expressions of iNOS, COX-2 and NF-${\kappa}B$. Additionally, oyster shell extract significantly inhibited the production of IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-stimulated Raw 264.7 cells. Thus, these results showed that the oyster shell extract had an anti-inflammatory effect on LPS-stimulated Raw 264.7 cells.

Keywords

References

  1. Schetter AJ, Heegaard NH, Harris CC. 2010. Inflammation and cancer. Carcinogenesis 31: 37-49. https://doi.org/10.1093/carcin/bgp272
  2. Guo LY, Hung TM, Bea KH, Shin EM, Zhou HY, Hong YN, Kang SS, Kim HP, Kim YS. 2008. Anti-inflammatory effects of schisandrin isolated from the fruit of schisandra chinensis baill. J Pharmacology 597: 293-299.
  3. Ljung T, Lundberg S, Varsanyi M, Johansson C, Schmidt PT, Herulf M, Lundberg JO, Hellstrom PM. 2006. Rectal nitric oxide as biomarker in the treatment of inflammatory bowel disease. World J Gastroenterol 12: 3386-3392. https://doi.org/10.3748/wjg.v12.i21.3386
  4. Watanabe K, Kawamori T, Nakatsugi S, Wakabayashi K. 2002. COX-2 and iNOS, good targets for chemoprevention of colon cancer. Biofactor 12: 129-133.
  5. MacMicking J, Xie QW, Nathan C. 1997. Nitric oxide and macrophage function. Annu Rev Lmmunol 15: 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  6. Li X, Xu W. 2010. TLR4-mediated activation of macrophages by the polysaccharide fraction form polyporus umbellatus. Fries J Ethnopharmacology 135: 1-6.
  7. Tsujii M, Kawano S, DuBois RN. 1997. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94: 3336-3340. https://doi.org/10.1073/pnas.94.7.3336
  8. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. 1998. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 58:362-366.
  9. Liu XH, Kirschenbaum A, Yao S, Stearns ME, Holland JF, Claffey K, Levine AC. 1999. Uppregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase- 2 in a metastatic human prostate cancer cell line. Clin Exp Metastasis 17: 687-694. https://doi.org/10.1023/A:1006728119549
  10. DeFranco AL, Hambleton J, McMahon M, Weinstein SL. 1995. Examination of the role of MAP kinase in the response of macrophages to lipopolysaccharide. Prog Clin Biol Res 392:407-420.
  11. Kim GH, Jeon YJ, Byun HG, Lee YS, Lee EH, Kim SK. 1998. Effect of calcium compounds from oyster shell bouind fish skin gelatin in calcium deficient rats. J Korean Fish Soc 31:149-159.
  12. Fujita T, Fukase M, Nakada M, Koishi M. 1998. Intestinal absorption of oyster shell electrolysate. Bone Miner 11: 85-91.
  13. Mosmann T. 1983. Rapid colormetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  14. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, Carriere A, Periquet A, Fernandez Y, Ktorza A, Casteilla L, Penicaud L. 2006. Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes 55: 2084-2090. https://doi.org/10.2337/db06-0086
  15. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Ann Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  16. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  17. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71: 952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  18. D' Agostino P, Ferlazzo V, Milano S, La Rosa M, Di Bella G, Caruso R, Barbera C, Grimaudo S, Tolomeo M, Feo S, Cillari E. 2001. Anti-inflammatory effects of chemically modified tetracyclines by the inhibition of nitric oxide and inteleukin- 12 synthesis in J774 cell line. Intern Immunopharmacol 1:1765-1776. https://doi.org/10.1016/S1567-5769(01)00100-X
  19. Kim EK. 2008. Purification and characterization of antioxidative peptides from enzymatic hydrolysates of venison. PhD Dissertation. Pusan National University, Busan, Korea.
  20. Lonkar P, Dedon PC. 2011. Reactive species and DNA damage in chronic inflammation. Int J Cancer 128: 1999-2009. https://doi.org/10.1002/ijc.25815
  21. Zaidi SF, Ahmed K, Yamamoto T, Kondo T, Usmanghani K, Kadowaki M, Sugiyama T. 2009. Effect of resveratrol on Helicobacter pylori-induced interleukin-8 secretion, reactive oxygen species generation and morphological changes in human gastric epithelial cells. Biol Pharm Bull 32: 1931-1935. https://doi.org/10.1248/bpb.32.1931
  22. Conforti F, Sosa S, Marrelli M, Menichini F, Statti GA, Uzunov D, Tubaro A, Menichini F. 2009. The protective ability of Mediterranean dietary plants against the oxidative damage: the role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chem 112: 587-594. https://doi.org/10.1016/j.foodchem.2008.06.013
  23. Vivancos M, Moreno JJ. 2005. ${\beta}$-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med 34: 91-97.
  24. Bulkey GB. 1983. The role of oxygen free radicals in human disease processes. Surgery 94: 407-411.
  25. Yasui K, Baba A. 2006. Therapeutic potential of superoxide dismutase for resolution of inflammation. Inflamm Res 55:359-363. https://doi.org/10.1007/s00011-006-5195-y
  26. Jarvinen K, Pietarinen-Runtti P, Linnainmaa K, Raivio KO, Krejsa CM, Kavanagh T. 2000. Antioxidant defense mechanisms of human mesothelioma and lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 278: 696-702. https://doi.org/10.1152/ajplung.2000.278.4.L696
  27. Zafarullah M, Li WQ, Sylvester J, Ahmad M. 2003. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6-20. https://doi.org/10.1007/s000180300001
  28. Hansen JM, Go YM, Jones DP. 2006. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46: 215-234. https://doi.org/10.1146/annurev.pharmtox.46.120604.141122
  29. Itzkowitz SH, Yio X. 2004. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287: 7-17. https://doi.org/10.1152/ajpgi.00079.2004
  30. Clancy RM, Amin AR. 1998. The role of nitric oxide in inflammation and immunity. Atrhritis Rheun 14: 1141-1151.
  31. Salas M, Gironella M, Salasa M. 2002. Nitric oxide supplementation ameliorates dextran sulfate sodium-induced colitis in mice. Lab Invest 82: 597-607. https://doi.org/10.1038/labinvest.3780454
  32. Kin SB, Seong YA, Jang HJ, Kim GD. 2011. The antiinflammatory effects of Persicaria thunbergii extracts on lipopolysaccharide-stimulated RAW 264.7 cells. J Life Sci 21:1689-1697. https://doi.org/10.5352/JLS.2011.21.12.1689
  33. Beckman JS, Koppenol WH. 1996. Nitric oxide, superoxide, and peroxynitirite: the good, the bad, and ugly. Am J Physiol 271: 1424-1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  34. Bosca L, Zeini M, Traves PG, Hortelano S. 2005. Nitiric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208: 249-258. https://doi.org/10.1016/j.tox.2004.11.035
  35. Aggarwal BB, Natarajan K. 1996. Tumor necrosis factors: developments during the last decade. Fur Cytokine Netw 7:93-124.
  36. Dinarello CA. 1999. Cytokines as endogenous pyrogens. J Infect Dis 179: 294-304. https://doi.org/10.1086/314577
  37. Jung WK, Choi I, Lee DY, Yea SS, Choi YH, Kim MM, Park SG, Seo SK, Lee SW, Lee CM, Park YM, Choi IW. 2008. Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in Raw 264.7 macrophages via the p38/ERK and NF-${\kappa}B$ pathways. Int J Biochem Cell Biol 40: 2572-2584. https://doi.org/10.1016/j.biocel.2008.05.005
  38. Paul PT, Cary SF. 2001. NF-${\kappa}B$: a key role in inflammatory diseases. J Clin Invest 107: 7-11. https://doi.org/10.1172/JCI11830
  39. Jung WK, Heo SJ, Jeon YJ, Lee CM, Park YM, Byun HG, Chio YH, Park SG, Choi IW. 2009. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J Agric Food Chem 57: 4439-4446. https://doi.org/10.1021/jf9003913
  40. Li C, Han W, Wang MH. 2010. Antioxidant activity of hawthom fruit in vitro. J Appl Biol Chem 53: 8-12. https://doi.org/10.3839/jabc.2010.002
  41. Perkins DJ, Kniss DA. 1999. Blockade of nitric oxide formation down-regulates cyclooxgenase-2 and decreases PGE2 biosynthesis in macrophages. J Leukoc Biol 65: 792-799. https://doi.org/10.1002/jlb.65.6.792
  42. Vane JR, Bottinf RM. 1998. Anti-inflammatory drugs and their mechanism of action. Inflamm Res 47: 78-87. https://doi.org/10.1007/s000110050284

Cited by

  1. Marine shells: Potential opportunities for extraction of functional and health-promoting materials vol.46, pp.11-12, 2016, https://doi.org/10.1080/10643389.2016.1202669
  2. Immunomodulatory properties of shellfish derivatives associated with human health vol.6, pp.31, 2016, https://doi.org/10.1039/C5RA26375A
  3. Effect of cerium oxide nanoparticles on sepsis induced mortality and NF-κB signaling in cultured macrophages vol.10, pp.8, 2015, https://doi.org/10.2217/nnm.14.205
  4. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality vol.87, 2016, https://doi.org/10.1016/j.foodres.2016.07.012
  5. Anti-inflammatory Effects of Propofol on Lipopolysaccharides-Treated Rat Hepatic Kupffer Cells vol.71, pp.2, 2015, https://doi.org/10.1007/s12013-014-0272-2
  6. Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles vol.59, 2015, https://doi.org/10.1016/j.biomaterials.2015.04.025
  7. Anti-inflammatory effect of Capuli cherry against LPS-induced cytotoxic damage in RAW 264.7 macrophages vol.102, 2017, https://doi.org/10.1016/j.fct.2017.01.024
  8. root ethanolic extract vol.25, pp.6, 2017, https://doi.org/10.1111/wrr.12599
  9. pp.1029-0486, 2018, https://doi.org/10.1080/02772248.2018.1551960
  10. Anti-inflammatory and antioxidant activity of Thai mango (Mangifera indica Linn.) leaf extracts pp.1618-565X, 2018, https://doi.org/10.1007/s00580-018-2809-z
  11. lipopolysaccharide vol.53, pp.5, 2018, https://doi.org/10.1111/jre.12564
  12. Effect and mechanism of oyster hydrolytic peptides on spatial learning and memory in mice vol.8, pp.11, 2018, https://doi.org/10.1039/C7RA13139A
  13. Crassaostrea gigas Oyster Shell Extract Inhibits Lipogenesis via Suppression of Serine Palmitoyltransferase vol.10, pp.2, 2013, https://doi.org/10.1177/1934578x1501000236
  14. Purified citritin in combination with vancomycin inhibits VRE in vitro and in vivo vol.163, pp.11, 2013, https://doi.org/10.1099/mic.0.000547
  15. Key Insights, Tools, and Future Prospects on Oyster Shell End-of-Life: A Critical Analysis of Sustainable Solutions vol.54, pp.1, 2013, https://doi.org/10.1021/acs.est.9b03736
  16. Cytotoxic and Anti- Inflammatory Activities of Glycosaminoglycans (GAGs) from Selected Sea Food Waste Extract on Cell Lines vol.981, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/msf.981.258
  17. Physicochemical, microbiological and sensory quality changes of tissues from Pacific oyster (Crassostrea gigas) during chilled storage vol.57, pp.7, 2013, https://doi.org/10.1007/s13197-020-04280-1
  18. Cacalol Acetate, a Sesquiterpene from Psacalium decompositum, Exerts an Anti-inflammatory Effect through LPS/NF-KB Signaling in Raw 264.7 Macrophages vol.83, pp.8, 2013, https://doi.org/10.1021/acs.jnatprod.0c00300
  19. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: anti-inflammatory, analgesic and anticancer activities vol.36, pp.1, 2013, https://doi.org/10.1080/14756366.2021.1956912
  20. (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone isolated from Portulaca oleracea L. suppresses LPS-induced inflammation in RAW 264.7 macrophages by downregulating inflammatory factors vol.43, pp.5, 2013, https://doi.org/10.1080/08923973.2021.1963271
  21. The potential of pharmacological activities of the multi-compound treatment for GERD: literature review and a network pharmacology-based analysis vol.64, pp.1, 2013, https://doi.org/10.1186/s13765-021-00617-2