DOI QR코드

DOI QR Code

Evaluation of Compression Index for Natural Clay Using the Compression Characteristic of Reconstituted Clay

재성형점토의 압축특성을 이용한 자연점토의 압축지수 추정

  • Received : 2011.08.01
  • Accepted : 2012.11.23
  • Published : 2013.03.29

Abstract

The compression index, representing the compressibility of clay, is generally obtained from the consolidation test, or predicted by empirical correlations using soil properties. However, empirical methods have regional limitations, because the compression index is affected not only by soil properties but also by site characteristics, such as deposition conditions and stress history. In this study, a method evaluating the compression index from typical soil properties is suggested using the characteristics of reconstituted clay. By analyzing the consolidation test results of Busan clay, the suggested method is verified, and the analysis of prediction error is carried out. It is shown that the proposed method evaluates the compression index more accurately than empirical methods previously suggested. The prediction errors occur by assumption, and are inversely proportional to $e_{cross}/e_0$, obviously.

압축지수는 점토의 압축특성을 나타내는 대표적인 물성치로 압밀시험으로 직접 결정하거나, 점토의 기본 물성으로부터 경험적 방법으로 추정한다. 그러나 자연점토의 압축지수는 지반 물성치뿐 아니라 퇴적상태에 영향을 받으므로 경험적 추정방법은 지역적 한계를 지닌다. 본 연구에서는 재성형점토의 압축특성을 이용하여 지반 물성치로부터 자연 점토의 압축지수를 추정하는 새로운 방법을 제안하였다. 부산점토의 압밀시험 결과를 통해 제안방법의 적합성을 검증하였으며, 오차원인을 분석하였다. 분석결과 제안된 방법은 경험적 추정방법보다 압축지수를 정확하게 추정하였다. 제안방법의 오차는 가정사항에 의해 발생하며, 추정오차는 $e_{cross}/e_0$와 명확한 반비례 관계를 나타냈다.

Keywords

References

  1. Azzouz, A. S., Krizek, R. J., and Corotis, R. B. (1976), "Regression analysis of soil compressibility", Soils and Foundations, Vol.16, pp.19-29.
  2. Burland, J. G. (1990), "On compressibility and shear strength of natural clay", Geotechnique, Vol.40, pp.329-378. https://doi.org/10.1680/geot.1990.40.3.329
  3. Chandler, B. J. (2000), "Clay sediments in depositional basins : the geotechnical cycle", J. Engineering Geology and Hydrogeology, Vol.33, No.3, pp.7-39. https://doi.org/10.1144/qjegh.33.1.7
  4. Chung, S. G., Ryu, C. K., Jo, K. Y. and Huh, D. Y. (2005), "Geological and geotechnical characteristics of marine clays at the Busan New Port", Marine Georesources & Geotechnology, Vol.23, No.3, pp.235-251. https://doi.org/10.1080/10641190500225712
  5. Chung, S. G., Jang, W. Y., Ninjgarav, E. and Ryu, C. K. (2006), "Compressibility characteristics associated with depositional environment of Pusna clay in Nakdong river estuary", J. Korean Geotechnical society, Vol.22, No.12, pp.57-65.
  6. Cozzolino, V. M. (1961), "Statistical forecasting of compression index", Proc. 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, France, Vol.1, pp.51-53.
  7. Herrero, O. R. (1983), "Universal compression index equation; Closure", J. Geotechnical Engineering, ASCE, Vol.109, No.5, pp.755-761. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(755)
  8. Hong, Z. (2006), "Correlating compression properties of sensitive clays using void index", Geotechnique, Vol.56, pp.573-577. https://doi.org/10.1680/geot.2006.56.8.573
  9. Hong, S. J., Lee, M. J., Kim, T. J. and Lee, W. J. (2009), "Evaluation of CPTu Cone factors for Busan Clay using Pore Pressure Ratio", J. Korean Geotechnical society, Vol.25, No.1, pp.77-88.
  10. Hong, S. J., Kim, D. H., Choi, Y. M. and Lee, W. J. (2011), "Prediction of compression index of Busan and Inchon clays considering sedimentation state", J. Korean Geotechnical society, Vol.27, No.9, pp.37-46. https://doi.org/10.7843/kgs.2011.27.9.037
  11. Kim, S. K. (1999), "Large consolidation settlement occurred during reclamation works in the Nakdong river mouth", proc. Dredging and Geoenvironmental conf., Korea, pp.35-48.
  12. Kim, S. K. (2008), "Characterization of deltaic deposits in the Nakdong River mouth, Busan", proc. ISC-3, Tapai, pp.75-88.
  13. Koppula, S. D. (1981), "Statistical estimation of compression index", Geotechnical Testing Journal, ASTM, Vol.4, No.2, pp.68-73. https://doi.org/10.1520/GTJ10768J
  14. Leroueil, S., Tavenas, F., Brucy, F., La Rochelle, P. and Roy, M. (1979), "Behaviour of destructured natural clays", J. Geotechnical Engineering Division, Vol.105, pp.759-778.
  15. Liu, M. D. and Carter, J. P. (1999), "Virgin compression of structured soil", Geotechnique, Vol.49, No.1, pp.43-57. https://doi.org/10.1680/geot.1999.49.1.43
  16. Locat, J. and Tanaka, H. (1999), "Microstructure, mineralogy and physical properties ; Techniques and application to the Busan clays", Proc. KSG'99 Dredging and Geoenvironmental conference, Seoul, pp.15-31.
  17. Nacci V. A., Wang, M. C. and Demars, K. R. (1975), "Engineering behavior of calcareous soils", Proc. Civil Engineering in the Oceans III, Newark, Vol.1, pp.380-400.
  18. Nagaraj, T. S. and Miura, N. (2001), "Soft clay behaviour - analysis and assessment", Balkema, Rotterdam.
  19. Nagaraj, T. S. and Srinivasa Murthy B. R. (1983), "Rationalization of skempton's compressibility equation", Geotechnique, Vol.33, pp.433-443. https://doi.org/10.1680/geot.1983.33.4.433
  20. Nagaraj, T. S. and Srinivasa Murthy B. R. (1986), "A critical reappraisal of compression index equations", Geotechnique, Vol.36, pp.27-32. https://doi.org/10.1680/geot.1986.36.1.27
  21. Nakase, A., Kamei, T. and Kusakabe, O. (1988), "Constitutive parameters estimated by plasticity index", J. Geotechnical Engineering, ASCE, Vol.114, No.7, pp.844-858. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:7(844)
  22. Park, J. H. and Koumoto, T. (2004), "New compression index equation", J. Geotechnical and Geoenvironmental Engineering, ASCE, Vol.130, No.2, pp.223-226. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(223)
  23. Shouka, H. (1964), "Relationship of compression index and liquid limit of alluvial clay", proc. 19th Japan civil engineering conf., Touhoku, Vol.4, pp.40.1-40.2.
  24. Sridharan, A. and Jayadeva, M. S. (1982), "Double layer theory and compressibility of clays", Geotechnique, Vol.32, pp.133-144. https://doi.org/10.1680/geot.1982.32.2.133
  25. Sridharan, A. and Nagaraj, H. B. (2000), "Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties", Canadian Geotechnical Journal, Vol.37, pp.712-722. https://doi.org/10.1139/t99-128
  26. Skempton, A. W. (1944), "Notes on the compressibility of clays", Q. J. Geological Society of London, Vol.100, pp.119-135. https://doi.org/10.1144/GSL.JGS.1944.100.01-04.08
  27. Schmertmann, J. H., (1955), "The undisturbed consolidation behavior of clay", Trans. ASCE, Vol.120, pp.1201-1233.
  28. Sowers, G. B. (1970), Introductory soil mechanics and foundation, The Macmillan company, London, UK.
  29. Tripathy, S., Sridharan, A. and Schanz, T. (2004), "Swelling pressures of compacted bentonites from diffuse double layer theory" Canadian Geotechnical Journal, Vol.41, pp.437-450. https://doi.org/10.1139/t03-096
  30. Tripathy, S. and Schanz, T. (2007), "Compressibility behaviour of clays at large pressures", Canadian Geotechnical Journal, Vol.44, pp.355-362. https://doi.org/10.1139/t06-123
  31. Worth, C. P. and Wood, D. M. (1978), "The correlation of index properties with some basic engineering properties of soils", Canadian Geotechnical Journal, Vol.15, pp.137-145. https://doi.org/10.1139/t78-014
  32. Yoon, G. L., Kim, B. T. and Jeon, S. S. (2004), "Empirical correlations of compression index for marine clay from regression analysis", Canadian Geotechnical Journal, Vol.41, pp.1213-1221. https://doi.org/10.1139/t04-057

Cited by

  1. An intelligent multi-objective EPR technique with multi-step model selection for correlations of soil properties vol.15, pp.8, 2013, https://doi.org/10.1007/s11440-020-00929-5