DOI QR코드

DOI QR Code

Permeability and Consolidation Characteristics of Clayey Sand Soils

점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가

  • 김광균 (삼성물산 건설부문 토목기술실 지하토목팀) ;
  • 박두희 (한양대학교 건설환경공학과) ;
  • 유진권 (한양대학교 건설환경공학과) ;
  • 이장근 (한국건설기술연구원)
  • Received : 2013.02.20
  • Accepted : 2013.03.25
  • Published : 2013.03.29

Abstract

Evaluation of permeability and coefficient of consolidation of clayey sand is critical in analyzing ground stability or environmental problems such as prediction of pollutant transport in groundwater. In this study, permeability tests using a flexible wall permeameter are performed to derive the coefficient of consolidation and permeability of reconstituted soil samples with various mixing ratios of kaolin clays and two different types of sands, which are Jumunjin and Ottawa sands. The test results indicate that the coefficient of consolidation and permeability plots linearly against clay contents in semi-log scale graphs for low clay mixing ratios ranging between 10 to 30%. It is also demonstrated that coefficient of consolidation and permeability of sand and clay mixture are dependent on the soil structure. Contrary to previous findings, the permeability is shown to be independent of the void ratio at low mixing ratios, which can be classified as non-floating fabric. The permeability decreases with the void ratio for floating fabric.

모래에 혼합된 점토의 혼합비에 의한 투수계수와 압밀계수의 영향분석을 위해 주문진 표준사와 오타와 모래에 카올린 점토를 다양한 혼합비로 섞은 시료를 제작하여 연성벽체투수시험을 실시하였다. 시험결과 시험이 실시된 10%에서 29%의 카올린 점토 혼합범위에서는 세미 로그 그래프 상에서 점토의 혼합비와 투수계수 및 압밀계수가 "반비례하는 선형적 상관관계를 나타내었다. 또한 투수계수와 압밀계수는 흙의 구조에 의해서 결정되는 것으로 나타났다. 점토비가 낮아 안정구조로 볼 수 있는 혼합토에서는 점토질 토사에서 투수계수 및 압밀계수와 높은 연관성을 가지고 있는 것으로 알려진 간극비와는 상호관계를 나타내지 않은 반면, 부유구조에서는 간극비의 증가에 따라서 투수계수가 감소하는 것으로 나타났다.

Keywords

References

  1. ASTM D 2487-93 "Standard classification of soils for engineering purposes (Unified Soil Classification System)," Annual Book of ASTM Standards, West Conshohocken, PA, ASTM International, pp.1-12.
  2. Bandini, P. and Sathiskumar, S. (2009), "Effects of Silt Content and Void Ratio on the Saturated Hydraulic Conductivity and Compressibility of Sand-Silt Mixtures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, pp.1976. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000177
  3. Carraro, J., Bandini, P., and Salgado, R. (2003), "Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance", Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.11, pp.965-976. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(965)
  4. Carraro, J., Prezzi, M., and Salgado, R. (2009), "Shear Strength and Stiffness of Sands Containing Plastic or Nonplastic Fines", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, pp.1167. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:9(1167)
  5. Carraro, J. and Salgado, R. (2004), "Mechanical Behavior of Non-Textbook Soils (Lliterature Review)", Joint Transportation Research Program, pp.143.
  6. Garcia-Bengochea, I., Lovell, C., and Altschaeffl, A. (1979), "Pore distribution and permeability of silty clays", Journal of the Geotechnical Engineering Division, Vol.105, No.7, pp.839-856.
  7. Hazen, A. (1930), "Water supply. American Civil Engineers Handbook": John Wiley & Sons, New York, NY.
  8. Head, E. (1992), "Comparison of the chemical composition of particulate material and copepod faecal pellets at stations off the coast of Labrador and in the Gulf of St. Lawrence", Marine Biology, Vol.112, No.4, pp.593-600. https://doi.org/10.1007/BF00346177
  9. Kenney, T., Lau, D., and Ofoegbu, G. (1984), "Permeability of compacted granular materials", Canadian Geotechnical Journal, Vol.21, No.4, pp.726-729. https://doi.org/10.1139/t84-080
  10. Kuerbis, R., and Vaid, Y. (1988), "Sand sample preparation: the slurry deposition method", Soils and Foundations, Vol.28, No.4, pp.107-118.
  11. Raju, P., Pandian, N., and Nagaraj, T. (1995), "Analysis and estimation of the coefficient of consolidation", ASTM Geotechnical Testing Journal, Vol.18, No.2, pp.252-258. https://doi.org/10.1520/GTJ10325J
  12. Salgado, R., Bandini, P., and Karim, A. (2000), "Shear strength and stiffness of silty sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, pp.451. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451)
  13. Samingan, A., Leong, E., and Rahardjo, H. (2003), "A flexible wall permeameter for measurements of water and air coefficients of permeability of residual soils", Canadian geotechnical journal, Vol.40, No.3, pp.559-574. https://doi.org/10.1139/t03-015
  14. Sivapullaiah, P., Sridharan, A., and Stalin, V. (2000), "Hydraulic conductivity of bentonite-sand mixtures", Canadian geotechnical journal, Vol.37, No.2, pp.406-413. https://doi.org/10.1139/t99-120
  15. Sridharan, A. and Nagaraj, H. (2004), "Coefficient of consolidation and its correlation with index properties of remolded soils", ASTM geotechnical testing journal, Vol.27, No.5, pp.469-474.
  16. Sridharan, A. and Nagaraj, H. (2005), "Hydraulic conductivity of remolded fine-grained soils versus index properties", Geotechnical and Geological Engineering, Vol.23, No.1, pp.43-60. https://doi.org/10.1007/s10706-003-5396-x
  17. Sridharan, A. and Prakash, K. (2001), "Consolidation and permeability behavior of segregated and homogeneous sediments", Geotechnical Testing Journal, Vol.24, No.1, pp.109-120. https://doi.org/10.1520/GTJ11287J
  18. Thevanayagam, S. (1998), "Effect of fines and confining stress on undrained shear strength of silty sands", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.6, pp.479-491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)
  19. Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J. (2002), "Undrained fragility of clean sands, silty sands, and sandy silts", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, pp.849. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  20. Vaid, Y. (1994), "Liquefaction of silty soils", Ground failures under seismic conditions ASCE Geotechnical Sepcial Publication, pp.1-16.