DOI QR코드

DOI QR Code

Economic Analysis of Wastewater Reuse Systems for Agricultural Irrigation using a System Dynamics Approach

시스템 다이내믹스를 이용한 농업용수 재이용시스템 경제성 분석

  • 정한석 (서울대학교 농업생명과학대학 지역시스템공학전공) ;
  • 서교 (서울대학교 농업생명과학대학 조경.지역시스템공학부) ;
  • 장태일 (전북대학교 농업생명과학대학 지역건설공학과) ;
  • 성충현 ;
  • 김학관 ;
  • 박승우 (서울대학교 농업생명과학대학 조경.지역시스템공학부)
  • Received : 2013.01.09
  • Accepted : 2013.02.13
  • Published : 2013.03.31

Abstract

Many studies have reported additional treatment is needed to use wastewater for agricultural purpose. Economic considerations should be taken into account to establish infrastructure for agricultural reuse because of a large amount of water use in irrigation and relatively low water quality requirement. The objective of this study was to conduct economic analysis of wastewater reclamation and reuse systems for agriculture. A system dynamics approach considering complexity and dynamics in the wastewater reuse systems was used for the economic analysis, which are related with social, environmental, and economic problems. Sensitivity and benefit cost analysis for wastewater reuse systems was conducted through the established economic assessment model. The result of sensitivity analysis showed that water resources development and installation cost were the most sensitive for total benefits and costs, respectively. The scenario-based test of the organized economic assessment model shows marginal cost ranges and enables decision-makers to decide reasonable cost for the wastewater reuse systems for agriculture.

Keywords

References

  1. Asano, T., L. Y. C. Leong, M. G. Rigby, and R. H. Sakaji, 1992. Evaluation of the California wastewater reclamation criteria using enteric virus monitoring data. Water Science and Technology 26(7-8): 1513-1524. https://doi.org/10.1021/es00032a003
  2. Ayres, R. M., R. Stott, D. L. Lee, D. D. Mara, and S. A. Silva, 1992. Contamination of lettuces with nematode eggs by spray irrigation with treated and untreated wastewater. Water Science and Technology 26(7-8): 1615-1623.
  3. Barlas Y., 2002. System dynamics: systemic feedback modeling for policy analysis. In Knowledge for Sustainable Development-An Insight into the Encyclopedia of Life Support Systems, 1131-1175. Oxford, UK: UNESCO Publishing.
  4. Blumenthal, U. J., A. Peasy, G. Ruiz-Palacios, and D. D. Mara, 2000. Guidelines for wastewater reuse in agriculture and aquaculture: recommended revisions based on new research evidence. WELL Study, Task no 68, Part 1. London, UK: WELL Resource Centre.
  5. Cho, E. H., 2012. Estimating Benefit of Water Quality Improvement by Raising Dam Project with Replacement Cost Method. Master's Thesis, Inha University, Korea (in Korean).
  6. Choe, J. S. and H. H. Kim, 2003. Cost Analysis of Construction and Operation for Wastewater Treatment Plants. Journal of the Korean Society of Environmental Engineers 25(1): 33-37 (in Korean).
  7. Chu, J. Y., J. N. Chen, C. Wang and P. Fu, 2004. Wastewater reuse potential analysis: implications for China's water resources management. Water Research 38: 2746-2756. https://doi.org/10.1016/j.watres.2004.04.002
  8. Cirelli G. L., S. Consoli, F. Licciardello, R. Aiello, F. Giuffrida, and C. Leonardo, 2012. Treated municipal wastewater reuse in vegetable production. Agricultural Water Management 104: 163-170. https://doi.org/10.1016/j.agwat.2011.12.011
  9. Eberlein, R., 2007. Vensim User's Guide (version 5). Harvard, MA.: Ventana Systems.
  10. Ford, A., 2009. Modeling the Environment. Washington, DC: Island Press.
  11. Forrester, J. W., 1961. Industrial Dynamics. Cambridge: The MIT Press.
  12. Forslund, A., J. H. J. Ensink, A. Battilani, I. Kljujev, S. Gola, V. Raicevic, Z. Jovanovic, R. Stikic, L. Sandei, T. Fletcher, and A. Dalsgaard, 2010. Faecal contamination and hygiene aspect associated with the use of treated wastewater and canal water for irrigation of potatoes. Agricultural Water Management 98: 440-450 https://doi.org/10.1016/j.agwat.2010.10.007
  13. Hall, R. I., P. W. Aitchison, and W. L. Kocay, 1994. Causal policy maps of managers: Formal methods for elicitation and analyis. Systems Dynamics Review 10(4): 337-360. https://doi.org/10.1002/sdr.4260100402
  14. Haruvy, N., 1997. Agricultural reuse of wastewater: nation-wide cost-benefit analysis. Agriculture, Ecosystem & Environment 66: 113-119. https://doi.org/10.1016/S0167-8809(97)00046-7
  15. Haruvy N., 1998. Wastewater reuse-regional and economic considerations. Resources, Conservation and Recycling 23: 57-66. https://doi.org/10.1016/S0921-3449(98)00010-X
  16. Hoffman, E. O., and R. H. Gardner, 1983. Evaluation ofUncertainties in Environmental Radiological Assessment Models, In Radiological Assessments: a Textbook on Environmental Dose Assessment, ed. Till, J.E. and H.R. Meyer, 11-55. Washington, DC: U.S. Nuclear Regulatory Commission.
  17. Hong, W. S., 1993. A Study on the Sensitivity Analysis for WASP4 Model. Master's Thesis, Seoul National University, Korea (in Korean).
  18. Im, S. J., M. G. Kang, S. W. Park, and C. E. Park, 2000. Surveying Water Supply from Irrigation Reservoirs in the Han River Basin. Journal of the Korean Society of Agricultural Engineers 42(6): 37-44 (in Korean).
  19. Jang T. I., 2009. Environmental effects of reclaimed wastewater irrigation on paddy fields. Ph. D. diss., Seoul National University, Korea (in Korean).
  20. Jang T. I., H. K. Kim, C. H. Seong, E. J. Lee, and S. W. Park, 2012. Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture. Agricultural Water Management 104: 235-243 https://doi.org/10.1016/j.agwat.2011.12.022
  21. Jang, T. I., S. B. Lee, C. H. Sung, H. P. Lee, and S. W. Park, 2010. Safe application of reclaimed water reuse for agriculture in Korea. Paddy Water Environment 8: 227-233. https://doi.org/10.1007/s10333-010-0203-9
  22. Jeong, H. S., C. H. Seong, T. I. Jang, K. W. Jung, M. S. Kang, and S. W. Park, 2011. Effects of reclaimed wastewater irrigation on paddy rice yields and fertilizer reduction using the DSSAT model. Journal of the Korean Society of Agricultural Engineers 53(4): 67-74 (in Korean). https://doi.org/10.5389/KSAE.2011.53.4.067
  23. Jimenez, B., 2005. Treatment technology and standards for agricultural wastewater reuse: a case study in Mexico. Irrigation and Drainage 54 (Suppl. 1): S22-S33.
  24. Jung, S. H., and Y. J. Joo, 2005. A study on the analysis of policy effects for system dynamics methodology: focusing on the sex trade special law. Korean Public Administration Review 39(1): 219-236 (in Korean).
  25. Jung, Y. H., 2012. Application and Verification of System Dynamics Model for Media Diversity in an Era of Multimedia and Multichannel. Ph. D. diss., Seoul National University, Korea (in Korean).
  26. Kang M. S., S. M. Kim, S. W. Park, J. J. Lee, and K. H. Yoo, 2007. Assessment of reclaimed wastewater irrigation impacts on water quality, soil, and rice cultivation in paddy fields. Journal of Environmental Science and Health part A 42: 439-445. https://doi.org/10.1080/10934520601187633
  27. Khan S., L. Yufeng, and A. Ahmad, 2009. Analysing complex behavior of hydrological systems through a system dynamics approach. Environmental Modelling & Software 24(12): 1363-1372. https://doi.org/10.1016/j.envsoft.2007.06.006
  28. Kim, D. H., T. H. Moon, and D. H. Kim, 1999. System Dynamics. Seoul, Korea: Daeyoung Moonhwasa (in Korean).
  29. Kim, D. H., 2004, Systems Thinking: Thinking Through Systems. Seoul, Korea: Sunhaksa (in Korean).
  30. Kim, K. H., C. S. Yi, J. H. Lee, and M. P. Shim, 2007. Framework for Optimum Scale Determination for Small Hydropower Development Using Economic Analysis. Journal of Korea Water Resources Association 40(12): 995-1005. https://doi.org/10.3741/JKWRA.2007.40.12.995
  31. Kim, H. D., K. Y. Lee, and Y. J. Lee, 2009. Application of wastewater reuse system for agriculture: status and prospects. Water for Futrue 42(9): 36-43 (in Korean).
  32. Kim, S. D., A. Y. Lee, J. W. Lee, and T. W. Kim, 2011. Spatio-Temporal Analysis of Future Extreme Drought Events Using a Conceptual Soil Water Model. Journal of the Korean Society of Hazard Mitigation 11(6): 349-356 (in Korean). https://doi.org/10.9798/KOSHAM.2011.11.6.349
  33. Korea Development Institute (KDI), 2008. Study on the revision for general guide to perform preliminary feasibility test (in Korean).
  34. Korean Statistical Information Service (KOSIS), Agricultural census data. http://kosis.kr. Acccessed 15th Dec. 2012.
  35. Lee, J. H., H. I. Kwon, Y. S. Kim, and M. H. Lee, 2007. Causal Loop Diagramming of Locatin Conflict on LULU (Locally Unwanted Land Use) Facilities and Policy Alternatives. Korean System Dynamics Research 8(1): 151-171 (in Korean).
  36. Liberti, L., M. Notarnicola, and A. Lopez, 2000. Advanced Treatment for Municipal Wastewater Reuse in Agriculture. III - Ozone Disinfection. Ozone Science & Engineering 22(2): 151-166. https://doi.org/10.1080/01919510008547217
  37. Mara, D., and S. Cairncross, 1989. Guidelines for theSafe Use of Wastewater and Excreta in Agriculture and Aquaculture. Geneva: World Health Organization.
  38. Minsitry of Environment (ME), 2012. The analysis results of management condition of public wastewater treatment plants in 2011 (in Korean).
  39. Meadows, D. H., 1980. The unavoidable a priori. In Elements of the System Dynamics Method, ed. J. Randers, 23-57. Cambridge, MA: The MIT Press.
  40. Ministry of Land, Trnasport and Maritime Affairs (MLTM), 2011. Long-Term Plans for Water Resources (in Korean).
  41. Nasiri F., T. Savage, R. Wang, N. Barawid, and J. B. Zimmerman, 2012. A system dynamics approach for urban water reuse planning: a case study from the great lakes region. Stochastic Environmental Research and Risk Assessment: 1-17.
  42. Park, S. W., 2007. Application of wastewater reuse system for agriculture. code#4-5-2. Seoul National University, Korea (in Korean).
  43. Park, S. W., 2011. Application of integrated technologies for wastewater reclamation and reuse system for agriculture. code#4-5-3. Seoul National University, Korea (in Korean).
  44. Peasey A. U., D. Blumenthal, D. Mara, and G. Ruiz- Palacios, 2000. A review of policy and standards for wastewater reuse in agriculture: a Latin American perspective. Task No: 68 Part II. London, UK: WELL study.
  45. Pereira, B. F. F., Z. L. He, P. J. Stoffella, and A. J. Melfi, 2011. Reclaimed wastewater: Effects on citrus nutrition. Agricultural Water Management 98: 1828- 1833. https://doi.org/10.1016/j.agwat.2011.06.009
  46. Petterson, S. R., N. Ashbolt, and A. Sharma, 2001. Microbial risks from wastewater irrigation of salad crops: a screening-level risk assessment. Water Environment Research 72: 667-672.
  47. Qi, J., L. Li, and H. Ai 2009. A systems dynamics approach to competitive strategy in mobile telecommunication industry. Systems Research and Behavioral Science 26(2): 155-168. https://doi.org/10.1002/sres.966
  48. Richmond, B., 1993. Systems thinking: critical thinking skills for the 1990s and beyond. System Dynamics Review 9(2): 113-133. https://doi.org/10.1002/sdr.4260090203
  49. Ryu J. H., B. Contor, G. Johnson, R. Allen, and J. Tracy, 2012. System dynamics to sustainable water resources management in the eastern snake plain aquifer under water supply uncertainty. Journal of the American Water Resources Association 48(6): 1-17. https://doi.org/10.1111/j.1752-1688.2011.00586.x
  50. Shin, D. I., 2011. Value Proposition Modelling and Analysis for Business Models of Product-Service Systems Using System Dynamics. Master's Thesis, Seoul National University, Korea (in Korean).
  51. Stave, K. A., 2003. A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. Journal of Environmental Management 67: 303-313. https://doi.org/10.1016/S0301-4797(02)00205-0
  52. Stevens, D. P., M. J. McLaughin, and M. Smart, 2003. Effects of long-term irrigation with reclaimed water on soils of the northern Adelaide plains, SA. Australian Journal of Soil Research 41: 933-948. https://doi.org/10.1071/SR02049
  53. Vasiloglou V., F. Lokkas, and G. Gravanis, 2009. New tool for wastewater treatment units location. Desalination 248: 1039-1048 https://doi.org/10.1016/j.desal.2008.10.020
  54. Vlachos, D., P. Georgiadis, and E. Iakovou, 2007. A system dynamics model for dynamic capacity planning of remanufacturing in closed-loop supply chains. Computers & Operations Research 34: 367-394. https://doi.org/10.1016/j.cor.2005.03.005
  55. Weick, K. E., 1979. The social psychology of organzing. Massachusettes: Addison-Wesley Publishing Company.
  56. World Health Organization (WHO), 2006. Guidelines for the safe use of wastewaters, excreta and greywater. Geneva, Switzerland: World Health Organization.
  57. Yang H., and K. C. Abbaspour, 2007. Analysis of wastewater reuse potential in Beijing. Desalination 212: 238-50. https://doi.org/10.1016/j.desal.2006.10.012
  58. Yeo, K. D., C. S. Yi, G. H. Kim, and M. P. Shim, 2009. Estimation of Water Quality Improvement Benefit Using Replacement Cost Approach. Journal of Korea Water Resources Association 42(4): 343-353. https://doi.org/10.3741/JKWRA.2009.42.4.343

Cited by

  1. Effects of Indirect Wastewater Reuse on Water Quality and Soil Environment in Paddy Fields vol.55, pp.3, 2013, https://doi.org/10.5389/KSAE.2013.55.3.091
  2. Statistics and Probability Distribution of Total Coliforms in Wastewater vol.55, pp.3, 2013, https://doi.org/10.5389/KSAE.2013.55.3.105