FINITE LOCAL RINGS OF ORDER ≤ 16 WITH NONZERO JACOBSON RADICAL

Sang Bok Nam

Abstract

The structures of finite local rings of order ≤ 16 with nonzero Jacobson radical are investigated. The whole shape of noncommutative local rings of minimal order is completely determined up to isomorphism.

1. Introduction

Throughout this paper all rings are associative with identity unless otherwise stated. Let R be a ring. $J(R)$ and $C h(R)$ denote the Jacobson radical and characteristic of R, respectively. $|S|$ denotes the cardinality of a subset S of R. Denote the n by n full (resp. upper triangular) matrix ring over R by $M a t_{n}(R)$ (resp. $U_{n}(R)$) and use $E_{i j}$ for the matrix with (i, j)-entry 1 and elsewhere $0 . \mathbb{Z}_{n}$ denotes the ring of integers modulo n, and $G F\left(p^{n}\right)$ denotes the Galois field of order p^{n}. (a) (resp. $\langle S\rangle$) denotes the ideal (resp. additive subgroup) of R generated by $a \in R$ (resp. $S \subseteq R$). Following [12], a ring R is called a minimal noncommutative local (resp. IFP) ring if R has the smallest order $|R|$ among the noncommutative local (resp. IFP) rings. Given $N \subseteq R, N^{+}$ means a subgroup of the additive abelian group $(R,+)$.

[^0]
2. Finite local rings with nonzero Jacobson radicals

The following lemma is a base for our study of finite local rings with nonzero Jacobson radicals.

Lemma 1. (1) Let R be a ring and N be a nil ideal of R. If $|N|=4$, then N is a commutative ring without identity such that $N^{3}=0$.
(2) Let R be a ring and N be a nil ideal of R. If $|N|=3$, then N is a commutative ring without identity such that $N^{2}=0$.

Proof. (1) is a part of [8, Lemma 2.7].
(2) Let $|N|=3$. Then N^{+}is cyclic, $N=\{0, a, 2 a\}$ say. Assume $a^{2} \neq 0$. This entails $a^{2}=2 a$ and so $a^{3}=0$: for, letting $a^{3} \neq 0$ we have $\left(a^{2}\right)^{2}=a^{4}=a^{3} a=a^{2}$ when $a^{3}=a$, and we have $\left(a^{2}\right)^{2}=a^{4}=a^{3} a=$ $a^{2} a=a^{2}$ when $a^{3}=2 a=a^{2}$; hence we get to a contradiction in any case. Thus $a^{3}=0$, and so $0 \neq a=4 a=2(2 a)=2 a^{2}=(2 a) a=a^{2} a=a^{3}=0$, which is also a contradiction. Consequently we get $a^{2}=0$ and this yields $N^{2}=0$.

Following the literature, we write

$$
D_{n}(R)=\left\{\left(a_{i j}\right) \in U_{n}(R) \mid a_{i i}=a_{j j} \text { for all } i, j \text { with } 1 \leq i<j \leq n\right\}
$$

and
$V_{n}(R)=\left\{\left(b_{i j}\right) \in D_{n}(R) \mid b_{s t}=b_{(s+1)(t+1)}\right.$ for all s, t with $\left.1 \leq s<t<n\right\}$
where R is a given ring.
Let R be an algebra (with or without identity) over a commutative ring S. Due to Dorroh [2], the Dorroh extension of R by S is the abelian group $R \oplus S$ with multiplication given by $\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}+s_{1} r_{2}+\right.$ $\left.s_{2} r_{1}, s_{1} s_{2}\right)$ for $r_{i} \in R$ and $s_{i} \in S$.

Example 2. (1) $S_{1}=\mathbb{Z}_{8}$ is a commutative local ring with $J\left(S_{1}\right)=$ $\{0,2,4,8\}=(2)$. Note $\left|S_{1}\right|=8, C h\left(S_{1}\right)=8, J\left(S_{1}\right)^{2} \neq 0, C h\left(J\left(S_{1}\right)\right)=$ 4 , and $J\left(S_{1}\right)^{3}=0$. Note $J(R)^{+}=\langle\{2\}\rangle$.
(2) Let $S_{2}=\left\{\left(\begin{array}{ccc}a & b & c \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right) \in D_{3}\left(\mathbb{Z}_{2}\right)\right\}$ and $S_{2}^{\prime}=\left\{\left(\begin{array}{ccc}a & 0 & c \\ 0 & a & b \\ 0 & 0 & a\end{array}\right) \in D_{3}\left(\mathbb{Z}_{2}\right)\right\}$.

Then S_{2} is a commutative local ring and $S_{2} \cong S_{2}^{\prime}$ with $a E_{i i} \mapsto a E_{i i}$, $c E_{13} \mapsto c E_{13}$, and $b E_{12} \mapsto b E_{23}$. Note $\left|S_{2}\right|=8, C h\left(S_{2}\right)=2$ and
$J\left(S_{2}\right)=\left\{\left(\begin{array}{lll}0 & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \in D_{3}\left(\mathbb{Z}_{2}\right)\right\}=\left(b E_{12}, c E_{13}\right)$. Letting $x=b E_{12}$ and $y=c E_{13}$, we have $x^{2}=y^{2}=x y=y x=0$ and $J\left(S_{2}\right)^{2}=0$. Note $J(R)^{+}=\langle\{x, y\}\rangle$.

Let $N=\left(\begin{array}{cc}0 & Z_{2} \\ 0 & 0\end{array}\right) \oplus\left(\begin{array}{cc}0 & Z_{2} \\ 0 & 0\end{array}\right)$ be the subring of $U_{2}\left(\mathbb{Z}_{2}\right) \oplus U_{2}\left(\mathbb{Z}_{2}\right)$, and S_{2}^{\prime} be the Dorroh extension of N by \mathbb{Z}_{2}. Then $J\left(S_{2}^{\prime}\right)=N$ with $J\left(S_{2}^{\prime}\right)^{+}=\left\langle\left\{\left(E_{12}, 0\right),\left(0, E_{12}\right)\right\}\right\rangle$ and $N^{2}=0$. Note $S_{2} \cong S_{2}^{\prime}$.
(3) Let $S_{3}=V_{3}\left(\mathbb{Z}_{2}\right)$. Then S_{3} is a commutative local ring with $J\left(S_{3}\right)=\left\{\left(\begin{array}{lll}0 & b & c \\ 0 & 0 & b \\ 0 & 0 & 0\end{array}\right) \in V_{3}\left(\mathbb{Z}_{2}\right)\right\}=\left(b E_{12}+b E_{23}, c E_{13}\right)$. Note $\left|S_{3}\right|=8$ and $C h\left(S_{3}\right)=2$. Letting $x=b E_{12}+b E_{23}$ and $y=c E_{13}$, we have $x^{2}=y$, $x^{3}=0$, and $J\left(S_{3}\right)^{3}=0$. Note $J(R)^{+}=\langle\{x, y\}\rangle$.

Let R be a finite local ring. Then $J(R)$ is a finite dimensional vector space over the finite field $R / J(R)$. Thus the case of $|R / J(R)|>|J(R)|$ is impossible if $J(R)$ is assumed to be nonzero, equivalently R is not a field. Thus we always have $|R / J(R)| \leq|J(R)|$ when R is a finite local ring but not a field. We will use this argument freely.

Theorem 3. (1) If R is a local ring with $|R|=8$ and $J(R) \neq 0$, then $|J(R)|=4$ and R is a commutative ring isomorphic to S_{i} for some $i \in\{1,2,3\}$, where S_{i} 's are the rings in Example 2.
(2) If R is a local ring with $|R|=4$ and $J(R) \neq 0$, then R is a commutative ring with $|J(R)|=2$ and isomorphic to either $D_{2}\left(\mathbb{Z}_{2}\right)$ or \mathbb{Z}_{4}.
(3) If R is a finite noncommutative local ring, then $|R| \geq 16$.
(4) If If R is a ring with $|R|=9$, then R is a commutative ring with $J(R)^{2}=0$ and isomorphic to $G F\left(3^{2}\right), \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}, D_{2}\left(\mathbb{Z}_{3}\right)$, or \mathbb{Z}_{9}.
(5) If If R is a ring with $|R|=4$, then R is a commutative ring with $J(R)^{2}=0$ and isomorphic to $G F\left(2^{2}\right), \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, D_{2}\left(\mathbb{Z}_{2}\right)$, or \mathbb{Z}_{4}.

Proof. (1) Let R be a local ring with $|R|=8$ and $J(R) \neq 0$. Then clearly $|J(R)|=4$, and so R is commutative by [8, Theorem(2)]. If $J(R)^{+}$is cyclic, then $J(R)=\{0, a, 2 a, 3 a\}$ for some $a \in J(R)$. Here $C h(a)=4$ by [7, Theorems 2.3.2 and 2.3.3] and their proofs. So we can take a such that $a^{2} \neq 0$ and $a^{3}=0$, thinking of Lemma $1(2)$ and Example 2(1). Hence $R \cong S_{1}$ in Example 2 with $a \mapsto 2$. Next assume
that $J(R)^{+}$is non-cyclic. Then, by [7, Theorem 2.3.3], there is a basis $\{a, b\}$ for N such that $2 a=0=2 b$ and one of the following holds: (i) $a^{2}=b^{2}=a b=b a=0$ and (ii) $a^{2}=b, a^{3}=0$. In the first case, $R \cong S_{2}$ in Example 2 with $a \mapsto x, b \mapsto y$. In the second case, $R \cong S_{3}$ in Example 2 with $a \mapsto x$.
(2) Let R be a local ring with $|R|=4$ and $J(R) \neq 0$. Then clearly $|J(R)|=2, J(R)=\{0, a\}$ say. This yields $R=\{0,1, a, 1+a\}$ and hence R is clearly commutative. If $C h(R)=2$, then $R \cong D_{2}\left(\mathbb{Z}_{2}\right)$ with $a \mapsto\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. If $C h(R)=4$, then 2 is a nonzero nilpotent element and so $R \cong \mathbb{Z}_{4}$ with $a \mapsto 2$.
(3) If R is a finite noncommutative local ring, then $J(R) \neq 0$. Hence we get the result by (1) and (2), noting that Eldridge proved that if a finite ring has a cube free factorization, then it is commutative in [3, Theorem].
(4) If $|R|=9$, then R is commutative by [3, Theorem]. Suppose that R is not isomorphic to $G F\left(3^{2}\right)$. We refer to the argument in (1). Let $J(R)=0$. Then R is isomorphic to $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ by the Wedderburn-Artin theorem. Let $J(R) \neq 0$. Then clearly $|J(R)|=3$, and $J(R)^{2}=0$ by Lemma $1(2)$. This entails $R / J(R) \cong \mathbb{Z}_{3}$. Thus R is isomorphic to $D_{2}\left(\mathbb{Z}_{3}\right)$ or \mathbb{Z}_{9}.
(5) The proof is similar to that of (4).

Following Bell [1], a ring R is called to satisfy the insertion-of-factorsproperty (simply, an IFP ring) if $a b=0$ implies $a R b=0$ for $a, b \in R$. Narbonne [10], Shin [11], and Habeb [4] used the terms semicommutative, SI, and zero-insertive for the IFP ring property, respectively. A ring is usually called reduced if it has no nonzero nilpotent elements. The class of IFP rings clearly contains commutative rings and reduced rings. Particularly, $D_{3}(R)$ is IFP if and only if R is a reduced ring by [5, Proposition 2.8]. There exist many non-reduced commutative rings (e.g., $\mathbb{Z}_{n^{l}}$ for $n, l \geq 2$), and many noncommutative reduced rings (e.g., direct products of noncommutative domains). A ring is usually called Abelian if each idempotent is central. A simple computation yields that IFP rings are Abelian.

Due to Lambek [9], a ring R is called symmetric if if $r s t=0$ implies $r t s=0$ for all $r, s, t \in R$. Symmetric rings are clearly IFP, but the converse need not hold by [6, Example 1.10]. The class of symmetric rings contains both commutative rings and reduced rings.

In [12, Theorem 8], Xu and Xue proved that a minimal noncommutative IFP ring is a local ring of order 16 , and if R is such a ring, then $R \cong R_{i}$ for some $i \in\{1,2,3,4,5\}$, where R_{i} 's are the rings in the following example.

Example 4. In [12, Example 7], we see five kinds of noncommutative finite local rings with 16 elements, with Jacobson radicals of order ≥ 4. Let $A\langle x, y\rangle$ be the free algebra generated by noncommuting indeterminates x, y over given a commutative ring A, and (x, y) denote the ideal of $A\langle x, y\rangle$ generated by x, y.
(1) Let $R_{1}=\mathbb{Z}_{2}\langle x, y\rangle / I$, where I is the ideal of $\mathbb{Z}_{2}\langle x, y\rangle$ generated by $x^{3}, y^{3}, y x, x^{2}-x y, y^{2}-x y$. Note $J\left(R_{1}\right)=(x, y)$ and $\left|J\left(R_{1}\right)\right|=8$.
(2) Let $R_{2}=\mathbb{Z}_{4}\langle x, y\rangle / I$, where I is the ideal of $\mathbb{Z}_{4}\langle x, y\rangle$ generated by $x^{3}, y^{3}, y x, x^{2}-x y, x^{2}-2, y^{2}-2,2 x, 2 y$. Note $J\left(R_{2}\right)=(x, y)$ and $\left|J\left(R_{2}\right)\right|=8$.
(3) Let $R_{3}=\left\{\left.\left(\begin{array}{rr}a & b \\ 0 & a^{2}\end{array}\right) \in U_{2}\left(G F\left(2^{2}\right)\right) \right\rvert\, a, b \in G F\left(2^{2}\right)\right\}$. Note $J\left(R_{3}\right)=$ $\left\{\left.\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right) \in R_{3} \right\rvert\, b \in G F\left(2^{2}\right)\right\}$ and $\left|J\left(R_{3}\right)\right|=4$.
(4) Let $R_{4}=\mathbb{Z}_{2}\langle x, y\rangle / I$, where I is the ideal of $\mathbb{Z}_{2}\langle x, y\rangle$ generated by $x^{3}, y^{2}, y x, x^{2}-x y$. It is simply checked that R_{4} is isomorphic to $D_{3}\left(\mathbb{Z}_{2}\right)$ through the corresponding $x \mapsto E_{12}+E_{23}$ and $y \mapsto E_{23}$. Note $J\left(R_{4}\right)=(x, y)$ and $\left|J\left(R_{4}\right)\right|=8$.
(5) Let $R_{5}=\mathbb{Z}_{4}\langle x, y\rangle / I$, where I is the ideal of $\mathbb{Z}_{4}\langle x, y\rangle$ generated by $x^{3}, y^{2}, y x, x^{2}-x y, x^{2}-2,2 x, 2 y$. Note $J\left(R_{5}\right)=(x, y)$ and $\left|J\left(R_{5}\right)\right|=$ 8.

Theorem 5. If R is a noncommutative local ring of minimal order, then $|R|=16$ and R is isomorphic to R_{i} for some $i \in\{1,2,3,4,5\}$, where R_{i} 's are the rings in Example 4.

Proof. Let R be a noncommutative local ring of minimal order. Then we have $|R| \geq 16$ by Theorem 3(3). This yields $|R|=16$ by the existence of the local rings in Example 4. Thus we have two cases of $|J(R)|=4$ and $|J(R)|=8$. If $|J(R)|=4$, then R is symmetric (hence IFP) by $[8$, Theorem 2.8(1)]. Assume $|J(R)|=8$. Then R is isomorphic to R_{1}, R_{2}, R_{3}, or R_{5} by the proof of [12, Theorem 8]. But these rings are IFP by the computation in [8, Example 2.10]. Therefore R is IFP in both cases, and this implies that R is a noncommutative IFP ring
of minimal order with the help of [12, Theorem 8]. Hence we have the theorem also by [12, Theorem 8].

We can have the following result with the help of Theorem 5 and [12, Theorem 8].

Corollary 6. A ring R is a noncommutative local ring of minimal order if and only if R is a noncommutative IFP ring of minimal order.

References

[1] H.E. Bell, Near-rings in which each element isa power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368.
[2] J.L. Dorroh, Concerning adjunctins to algebras, Bull. Amer. Math. Soc. 38 (1932), 85-88.
[3] K.E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1966) 376-377.
[4] J.M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76.
[5] Y.C. Jeon, H.K. Kim, Y. Lee, J.S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), 135-146.
[6] N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207-223.
[7] R. L. Kruse and D. T. Price, Nilpotent Rings, Gordon and Breach, New York, 1969.
[8] T.K. Kwak, Y. Lee, S.J. Yun, The Armendariz property on ideals, J. Algebra 354 (2012), 121-135.
[9] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971) 359-368
[10] L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
[11] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60.
[12] L. Xu and W. Xue, Structure of minimal non-commutative zero-insertive rings, Math. J. Okayama Univ. 40 (1998) 69-76.

Department of Early Child Education
Kyungdong University
Kosung 219-830, Korea
E-mail: sbnam@k1.ac.kr

[^0]: Received September 27, 2012. Revised January 29, 2013. Accepted February 1, 2013.

 2010 Mathematics Subject Classification: 16L30, 16N40.
 Key words and phrases: finite local ring, Jacobson radical, nil ideal.
 Funding for this research provided by Kyungdong University in 2013 is gratefully acknowledged.
 © The Kangwon-Kyungki Mathematical Society, 2013.
 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

