A PROOF ON POWER-ARMENDARIZ RINGS

Dong Hwa Kim, Sung Ju Ryu and Yeonsook Seo*

Abstract

Power-Armendariz is a unifying concept of Armendariz and commutative. Let R be a ring and I be a proper ideal of R such that R / I is a power-Armendariz ring. Han et al. proved that if I is a reduced ring without identity then R is power-Armendariz. We find another direct proof of this result to see the concrete forms of various kinds of subsets appearing in the process.

1. Introduction

Throughout this note every ring is associative with identity unless otherwise stated. \mathbb{Z} denotes the ring of integers. Denote the n by n upper triangular matrix ring over R by $U_{n}(R)$. We use $R[x]$ to denote the polynomial ring with an indeterminate x over R. For $f(x) \in R[x]$, let $C_{f(x)}$ denote the set of all coefficients of $f(x)$. For $n \geq 2$, define

$$
D_{n}(R)=\left\{\left.\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \in U_{n}(R) \right\rvert\, a, a_{i j} \in R\right\}
$$

[^0]A ring (possibly without identity) is usually called reduced if it has no nonzero nilpotent elements. For a reduced ring R and $f(x), g(x) \in R[x]$, Armendariz [1, Lemma 1] proved that

$$
a b=0 \text { for all } a \in C_{f(x)}, b \in C_{g(x)} \text { whenever } f(x) g(x)=0 .
$$

Rege and Chhawchharia [4] called a ring (possibly without identity) Armendariz if it satisfies this property. So reduced rings are clearly Armendariz. According to Han et al. [2], a ring R (possibly without identity) is called power-Armendariz if whenever $f(x) g(x)=0$ for $f(x), g(x) \in R[x]$, there exist $m, n \geq 1$ such that

$$
a^{m} b^{n}=0 \text { for all } a \in C_{f(x)}, b \in C_{g(x)} .
$$

It is obvious that $a^{m} b^{n}=0$ for some $m, n \geq 1$ if and only if $a^{\ell} b^{\ell}=0$ for some $\ell \geq 1$, in the preceding definition. Armendariz rings are clearly power-Armendariz, but the converse need not be true. In fact, letting $\left.A=D_{2}(\mathbb{Z})\right), D_{3}(A)$ is power-Armendariz by $\left[2\right.$, Theorem], but $D_{3}(A)$ is not Armendariz by [3, Proposition 2.8].

2. Main result

Han et al. proved the following.
[2, Theorem 1.11(4)] Let R be a ring and I be a proper ideal of R such that R / I is a power-Armendariz ring. If I is a reduced ring without identity, then R is power-Armendariz.

We state here another direct proof of this theorem to see the concrete forms of various kinds of subsets appearing in the process.

Another proof of [2, Theorem 1.11(4)] The first basic part of this proof is almost a restatement of one of $[2$, Theorem $1.11(1,2,3)]$. Suppose that I is a reduced ring, and let $f(x) g(x)=0$ for $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{\ell} b_{j} x^{j} \in R[x]$. Since R / I is power-Armendariz, there exists $s \geq 1$ such that $a_{i}^{s} b_{j}^{s} \in I$ for all i, j. Without loss of generality, we let $m=\ell$ by using zero coefficients if necessary.

Suppose $r_{1} r_{2}=0$ for $r_{1}, r_{2} \in R$. Then $\left(r_{2} I r_{1}\right)^{2}=0$, but $r_{2} I r_{1} \subseteq I$ implies $r_{2} I r_{1}=0$ since I is reduced. Similarly we get
(1) $r_{4} S r_{3}=0$ for all $S \subseteq I$ whenever $r_{3} I r_{4}=0$ for some $r_{3}, r_{4} \in R$,
through the computation of

$$
\left(r_{4} S r_{3}\right)^{3} \subseteq\left(r_{4} S r_{3}\right) I\left(r_{4} S r_{3}\right)=r_{4} S\left(r_{3} I r_{4}\right) S r_{3}=0
$$

Summarizing, we have that

$$
\begin{equation*}
r_{1} r_{2}=0 \text { implies } r_{1} I r_{2}=0 \text { and } r_{2} I r_{1}=0 \tag{2}
\end{equation*}
$$

by help of (1).
Suppose that $r_{1} r_{2} \cdots r_{n}=0$ for $r_{i} \in R$ and $n \geq 2$.
Then $r_{1} I r_{2} I \cdots I r_{n}=0$ by using (2) repeatedly, and so we furthermore have

$$
\begin{equation*}
r_{\sigma(1)} I r_{\sigma(2)} I \cdots I r_{\sigma(n)}=0 \tag{3}
\end{equation*}
$$

for any permutation σ of the set $\{1,2, \ldots, n\}$ from the computation of

$$
\left(r_{\sigma(1)} I r_{\sigma(2)} I \cdots I r_{\sigma(n)}\right)^{2 n} \subseteq R r_{1} I r_{2} I \cdots I r_{n} R=0,
$$

using the condition that I is reduced. Especially we have $a_{0} I b_{0}=0$ and $b_{0} I a_{0}=0$ from $a_{0} b_{0}=0$. We will use freely the condition that I is reduced.

Consider $a_{0} b_{1} I a_{0} b_{1}$.
Since $a_{0} b_{1}=-a_{1} b_{0}$, we have $a_{0} b_{1} I a_{0} b_{1}=-a_{0} b_{1} I a_{1} b_{0}=0$ from $a_{0} I b_{0}=0$. This yields $b_{1} b_{1} I a_{0} a_{0}=0$ by the computation of

$$
\begin{aligned}
\left(b_{1} b_{1} I a_{0} a_{0}\right)^{3} & =\left(b_{1} b_{1} I a_{0} a_{0}\right)\left(b_{1} b_{1} I a_{0} a_{0}\right)\left(b_{1} b_{1} I a_{0} a_{0}\right) \\
& =\left(b_{1} b_{1} I a_{0}\right)\left(a_{0} b_{1} b_{1} I a_{0} a_{0} b_{1}\right)\left(b_{1} I a_{0} a_{0}\right) \\
& \subseteq\left(b_{1} b_{1} I a_{0}\right)\left(a_{0} b_{1} I a_{0} b_{1}\right)\left(b_{1} I a_{0} a_{0}\right)=0 .
\end{aligned}
$$

This also yields $a_{0} a_{0} I b_{1} b_{1}=0$ by result (1); hence $a_{0}^{s+2} b_{1}^{s+2}=0$ because $a_{0}^{s} b_{1}^{s} \in I$. Similarly we get $a_{1}^{2} I b_{0}^{2}=0$ and $a_{1}^{s+2} b_{0}^{s+2}=0$ also from $a_{0} b_{0}=0$ and $a_{0} b_{1}+a_{1} b_{0}=0$, by exchanging the roles of a_{0} and b_{0}.

Consider $a_{0} b_{2} I a_{0} b_{2}$. Since $a_{0} b_{2}=-a_{1} b_{1}-a_{2} b_{0}$, we have $a_{0} b_{2} I a_{0} b_{2}=$ $a_{0} b_{2} I\left(-a_{1} b_{1}-a_{2} b_{0}\right)=-a_{0} b_{2} I a_{1} b_{1}$ from $a_{0} I b_{0}=0$. But (2) implies

$$
\left(a_{0} b_{2} I a_{1} b_{1}\right)^{3}=\left(a_{0} b_{2} I a_{1} b_{1}\right)\left(a_{0} b_{2} I a_{1} b_{1}\right)\left(a_{0} b_{2} I a_{1} b_{1}\right) \subseteq a_{0} I a_{0} I b_{1} I b_{1}=0
$$

since $a_{0}^{2} I b_{1}^{2}=0$, entailing $a_{0} b_{2} I a_{0} b_{2}=0$. So we get $a_{0} a_{0} I b_{2} b_{2}=0$ and $a_{0}^{s+2} b_{2}^{s+2}=0$ by a similar method to one above.

We will proceed by induction on m. Assume that $a_{0} b_{h} I a_{0} b_{h}=0$ (then $a_{0} a_{0} I b_{h} b_{h}=0$ and $a_{0} I a_{0} I b_{h} I b_{h}=0$ by (3) and the method above) for all $h<k$, where $1 \leq k \leq m$. Consider $a_{0} b_{k} I a_{0} b_{k}$. Since $a_{0} b_{k}=$ $-a_{1} b_{k-1}-\cdots-a_{k} b_{0}$, we have $a_{0} b_{k} I a_{0} b_{k}=a_{0} b_{k} I\left(-a_{1} b_{k-1}-\cdots-a_{k-1} b_{1}\right)$
from $a_{0} I b_{0}=0$. But (3) implies

$$
\begin{aligned}
& \left(a_{0} b_{k} I a_{0} b_{k}\right)^{2 k+3}=\left(a_{0} b_{k} I\left(-a_{1} b_{k-1}-\cdots-a_{k-1} b_{1}\right)\right)^{2 k+3} \\
= & \left(a_{0} b_{k} I\left(-a_{1} b_{k-1}-\cdots-a_{k-1} b_{1}\right)\right) \times\left(a_{0} b_{k} I\left(-a_{1} b_{k-1}-\cdots-a_{k-1} b_{1}\right)\right) \\
& \times\left(a_{0} b_{k} I\left(-a_{1} b_{k-1}-\cdots-a_{k-1} b_{1}\right)\right)^{2 k+1} \\
\subseteq & a_{0} I a_{0} I\left(I\left(-a_{1} b_{k-1}-\cdots-a_{k-1} b_{1}\right)\right)^{2 k+1} \\
\subseteq & a_{0} I a_{0} I\left(I\left(-a_{1} b_{k-1}-\cdots-a_{k-1} b_{1}\right) I\right)^{k} I \\
\subseteq & a_{0} I a_{0} I\left(b_{k-1} I b_{k-1} I+\cdots+b_{1} I b_{1} I\right)=0
\end{aligned}
$$

since $a_{0} I a_{0} I b_{h} I b_{h}=0$ for all $h=0,1, \ldots, k-1$, entailing $a_{0} b_{k} I a_{0} b_{k}=0$.
So we get $a_{0} a_{0} I b_{k} b_{k}=0$ and $a_{0}^{s+2} b_{k}^{s+2}=0$ by a similar method to one above. This implies $a_{0}^{2} I b_{t}^{2}=0$ and $a_{0}^{s+2} b_{t}^{s+2}=0$ for all $t=0,1, \ldots, m$.

We similarly get $a_{t}^{2} I b_{0}^{2}=0$ and $a_{t}^{s+2} b_{0}^{s+2}=0$ for all $t=0,1, \ldots, m$, by exchanging the roles of a_{0} and b_{0}. Summarizing, we now have

$$
\begin{align*}
& a_{0} b_{t} I a_{0} b_{t}=0, a_{0}^{2} I b_{t}^{2}=0, a_{0}^{s+2} b_{t}^{s+2}=0, \tag{4}\\
& \text { and } a_{t} b_{0} I a_{t} b_{0}=0, a_{t}^{2} I b_{0}^{2}=0, a_{t}^{s+2} b_{0}^{s+2}=0 \text { for all } t=0,1, \ldots, m \text {. }
\end{align*}
$$

Next consider $a_{1} b_{1} I a_{1} b_{1}$. Since $a_{1} b_{1}=-a_{0} b_{2}-a_{2} b_{0}$, we have $a_{1} b_{1} I a_{1} b_{1}=$ $a_{1} b_{1} I\left(-a_{0} b_{2}-a_{2} b_{0}\right)$. But

$$
\begin{aligned}
& \left(a_{1} b_{1} I a_{1} b_{1}\right)^{6}=\left(a_{1} b_{1} I\left(-a_{0} b_{2}-a_{2} b_{0}\right)\right)^{6} \subseteq\left(\left(a_{1} b_{1} I a_{0} b_{2}+a_{1} b_{1} I a_{2} b_{0}\right) I\right)^{3} \\
& \subseteq\left(a_{1} b_{1} I a_{0} b_{2} I+a_{1} b_{1} I a_{2} b_{0} I\right)^{3}=\left(I a_{0} b_{2} I\right)^{2}+\left(I a_{2} b_{0} I\right)^{2}=0
\end{aligned}
$$

by help of (4). So we get $a_{1} b_{1} I a_{1} b_{1}=0, a_{1} a_{1} I b_{1} b_{1}=0$ and $a_{1}^{s+2} b_{1}^{s+2}=0$ by the method above.

Consider $a_{1} b_{2} I a_{1} b_{2}$. Since $a_{1} b_{2}=-a_{0} b_{3}-a_{2} b_{1}-a_{3} b_{0}$, we have $a_{1} b_{2} I a_{1} b_{2}=a_{1} b_{2} I\left(-a_{0} b_{3}-a_{2} b_{1}-a_{3} b_{0}\right)$. Then $a_{1} b_{1} I a_{1} b_{1}=0$ and (4) yield

$$
\begin{aligned}
& \left(a_{1} b_{2} I a_{1} b_{2}\right)^{8}=\left(a_{1} b_{2} I\left(-a_{0} b_{3}-a_{2} b_{1}-a_{3} b_{0}\right)\right)^{8} \\
\subseteq & \left(\left(a_{1} b_{2} I\left(-a_{0} b_{3}-a_{2} b_{1}-a_{3} b_{0}\right)\right) I\right)^{4} \\
\subseteq & \left(\left(a_{1} b_{2} I a_{0} b_{3}+a_{1} b_{2} I a_{2} b_{1}+a_{1} b_{2} I a_{3} b_{0}\right) I\right)^{4} \\
\subseteq & \left(I a_{0} I b_{3} I\right)^{2}+\left(I a_{1} I b_{1} I\right)^{2}+\left(I a_{0} I b_{3} I\right)^{2}=0
\end{aligned}
$$

by help of (3), entailing $a_{1} b_{2} I a_{1} b_{2}=0, a_{1} a_{1} I b_{2} b_{2}=0$, and $a_{1}^{s+2} b_{2}^{s+2}=0$.
We will proceed by induction on m. Assume that $a_{1} b_{h} I a_{1} b_{h}=0$ (then $a_{1} a_{1} I b_{h} b_{h}=0$ and $a_{1} I a_{1} I b_{h} I b_{h}=0$ by (3) and the method above) for all $h<k$, where $1 \leq k \leq m$. Consider $a_{1} b_{k} I a_{1} b_{k}$. Since $a_{1} b_{k}=$
$-a_{2} b_{k-1}-\cdots-a_{k} b_{1}$, we have $a_{1} b_{k} I a_{1} b_{k}=a_{1} b_{k} I\left(-a_{2} b_{k-1}-\cdots-a_{k} b_{1}\right)$. But (3) implies

$$
\begin{aligned}
& \left(a_{1} b_{k} I a_{1} b_{k}\right)^{2 k+3}=\left(a_{1} b_{k} I\left(-a_{2} b_{k-1}-\cdots-a_{k} b_{1}\right)\right)^{2 k+3} \\
= & \left(a_{1} b_{k} I\left(-a_{2} b_{k-1}-\cdots-a_{k} b_{1}\right)\right) \times\left(a_{1} b_{k} I\left(-a_{2} b_{k-1}-\cdots-a_{k} b_{1}\right)\right) \\
& \quad \times\left(a_{1} b_{k} I\left(-a_{2} b_{k-1}-\cdots-a_{k} b_{1}\right)\right)^{2 k+1} \\
\subseteq & a_{1} I a_{1} I\left(I\left(-a_{2} b_{k-1}-\cdots-a_{k} b_{1}\right)\right)^{2 k+1} \\
\subseteq & a_{1} I a_{1} I\left(I\left(-a_{2} b_{k-1}-\cdots-a_{k} b_{1}\right) I\right)^{k} I \\
\subseteq & a_{1} I a_{1} I\left(b_{k-1} I b_{k-1} I+\cdots+b_{1} I b_{1} I\right)=0
\end{aligned}
$$

since $a_{1} I a_{1} I b_{h} I b_{h}=0$ for $h=1, \ldots, k-1$, entailing $a_{1} b_{k} I a_{1} b_{k}=0$. So we get $a_{1} a_{1} I b_{k} b_{k}=0$ and $a_{1}^{s+2} b_{k}^{s+2}=0$ by a similar method to one above. This implies $a_{1}^{2} I b_{t}^{2}=0$ and $a_{1}^{s+2} b_{t}^{s+2}=0$ for all $t=0,1, \ldots, m$. We similarly obtain $a_{t}^{2} I b_{1}^{2}=0$ and $a_{t}^{s+2} b_{1}^{s+2}=0$ for all $t=0,1, \ldots, m$.

Lastly we will show that $a_{u} b_{h} I a_{u} b_{h}=0$ if $a_{t} b_{h} I a_{t} b_{h}=0$ for all $t<u$ and $h=1, \ldots, m$, where $1 \leq u \leq m$. We will proceed by induction on m. Assume that $a_{t} b_{h} I a_{t} b_{h}=0$ (then $a_{t} a_{t} I b_{h} b_{h}=0$ and $a_{t} I a_{t} I b_{h} I b_{h}=0$ by (3) and the method above) for all $t<u$ and $h=1, \ldots, m$, where $1 \leq u \leq m$. Consider $a_{u} b_{h} I a_{u} b_{h}$. From $\sum_{i+j=u+h} a_{i} b_{j}=0$, we have $a_{u} b_{h} I a_{u} b_{h}=\left(-a_{u-1} b_{h+1}-\cdots-a_{h} b_{u}\right) I a_{u} b_{h}$ by assumption. So we can let $u \geq h$. Let w be the number of monomials of degree $u+h$. But (3) implies

$$
\begin{aligned}
&\left(a_{u} b_{h} I a_{u} b_{h}\right)^{2 w+3}=\left(\left(-a_{u-1} b_{h+1}-\cdots-a_{h} b_{u}\right) I a_{u} b_{h}\right)^{2 w+3} \\
& \subseteq\left(\left(-a_{u-1} b_{h+1}-\cdots-a_{h} b_{u}\right) I a_{u} b_{h}\right)^{2 w+1} \times\left(\left(-a_{u-1} b_{h+1}-\cdots-a_{h} b_{u}\right) I a_{u} b_{h}\right) \\
& \quad \times\left(\left(-a_{u-1} b_{h+1}-\cdots-a_{h} b_{u}\right) I a_{u} b_{h}\right) \\
& \subseteq\left(I\left(-a_{u-1} b_{h+1}-\cdots-a_{h} b_{u}\right) I\right)^{w} I b_{h} I b_{h} \\
& \subseteq I\left(a_{u-1} I a_{u-1} I+\cdots+a_{h} I a_{h} I\right) b_{h} I b_{h}=0
\end{aligned}
$$

since $a_{p} I a_{p} I b_{h} I b_{h}=0$ for all $p<u$, entailing $a_{u} b_{h} I a_{u} b_{h}=0$. So we get $a_{u} a_{u} I b_{h} b_{h}=0$ and $a_{u}^{s+2} b_{h}^{s+2}=0$ by the method above. This implies that $a_{i}^{s+2} b_{j}^{s+2}=0$ for all i, j. Therefore R is power-Armendariz.

Acknowledgments. The authors thank the referee for very careful reading of the manuscript and many valuable suggestions that improved the paper by much.

References

[1] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[2] J. Han, T.K. Kwak, M.J. Lee, Y. Lee, Y. Seo, On powers of coefficients of zero-dividing polynomials, (submitted).
[3] Y.C. Jeon, H.K. Kim, Y. Lee, J.S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), 135-146.
[4] M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.

Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail: dhgim@pusan.ac.kr
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail: sjryu@pusan.ac.kr
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail: ysseo0305@pusan.ac.kr

[^0]: Received October 17, 2012. Revised December 30, 2012. Accepted February 10, 2013.

 2010 Mathematics Subject Classification: 16U80, 16N40.
 Key words and phrases: power-Armendariz ring, Armendariz ring, polynomial ring, matrix ring.

 This work was supported by a 2-Year Research Grant of Pusan National University.
 *Corresponding author.
 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

