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CONTINUITY OF THE SPECTRUM ON A CLASS A(k)

In Ho Jeon and In Hyoun Kim∗

Abstract. Let T be a bounded linear operator on a complex Hilbert
space H . An operator T is called class A operator if |T 2| ≥ |T |2

and is called class A(k) operator if (T ∗|T |2kT )
1

k+1 ≥ |T |2 for a pos-
itive number k. In this paper, we show that σ is continuous when
restricted to the set of class A(k) operators.

1. Introduction

Let L (H ) denote the algebra of bounded linear operators on a
complex Hilbert space H . Recall ([1], [3], [5], [7]) that an operator
T ∈ L (H ) is called p-hyponormal if

(T ∗T )p ≥ (TT ∗)p for p ∈ (0, 1].

Especially, if p = 1, T is hyponormal and if p = 1
2
, T is semi-hyponormal.

It is well known that q-hyponormal operators are p-hyponormal for
p ≤ q. An operator T is called paranormal if ||T 2x|| ≥ ||Tx||2 for
all unit vector x ∈ H , and T is called normaloid if ||T n|| = ||T ||n
for n ∈ N (equivalently, ||T || = r(T ), the spectral radius of T ). For
positive numbers s and t, an operator T belongs to class A(s, t) if

(|T ∗|t|T |2s|T |t)
t

s+t ≥ |T ∗|2t. Especially, we denote class A(1, 1) by class
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A, simply. It is well known that for p ∈ (0, 1]

{hyponormal} ⊂ {p− hyponormal}
⊂ {class A(s, t), s, t ∈ (0, 1]}
⊂ {class A}
⊂ {paranormal}
⊂ {normaloid}.

Let T ∈ L (H ) and T = U |T | be a polar decomposition, where
U is a partial isometry with initial and final spaces ranT ∗ and ranT ,
respectively. Note that if T ∈ L (H ) then kerT = ker|T |α for every
α > 0. Thus if T = U |T | is a p-hyponormal operator then ker(|T |2p) ⊆
ker(|T ∗|2p), so that kerT ⊆ kerT ∗, which implies ranT ⊆ ranT ∗. Thus,
in the polardecomposition T = U |T |, the operator U can be extended
to an isometry from H to H .

Let G denote the set, equipped with the Hausdorff metric, of all com-
pact subsets of C. If U is a unital Banach algebra then the spectrum can
be viewed as a function σ : U → G, mapping each T ∈ U to its spectrum
σ(T ). It is well known that the function σ is upper semicontinuous and
that in noncommutative algebras, σ does have points of discontinuity.
The work of J. Newburgh ([15]) contains the fundamental results on
spectral continuity in general Banach algebras. J. Conway and B. Mor-
rel ([4]) have undertaken a detailed study of spectral continuity in the
case where the Banach algebra is the C∗-algebra of all operators acting
on a complex separable Hilbert space. Of interest is the identification of
points of spectral continuity and of classes C of operators for which σ be-
comes continuous when restricted to C. Recently Farenick and Lee ([8])
and Hwang and Lee ([11]) was considered the spectral continuity when
restricted to certain subsets of the entire manifold of Toeplitz operators.
The set of normal operators is perhaps the most immediate in the latter
direction: σ is continuous on the set of normal operators. As noted in
solution 105 of Hilbert space problem book, Newburgh’s argument uses
the fact that the inverses of normal resolvents are normaloid. This argu-
ment can be easily extended to the set of hyponormal operators because
the inverses of hyponormal resolvents are also hyponormal and hence
normaloid.
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Now we consider the generalization of class A operator. For positive
number k, an operator T ∈ L (H ) belongs to class A(k) if

(T ∗|T |2kT )
1

k+1 ≥ |T |2.

It is well known that for 0 < p, k ≤ 1, the following inclusion relation
holds

{hyponormal} ⊂ {p− hyponormal} ⊂ {class A(k)} ⊂ {class A}.

Although class A(k) operators are normaloid for 0 < k ≤ 1, class A(k)
operator is not translation-invariant. Thus the arguments of Newburgh
cannot apply to show that σ is continuous when restricted to the set
of class A(k) operators. In this paper, using the arguments of Cho and
Yamazaki ([6]), we show that spectrum is continuous when restricted to
the set of class A(k) operators.

2. Results

We begin with the following lemma.

Lemma 2.1. ([11], Theorem ) The spectrum σ is continuous on the
set of all p-hyponormal operators.

Lemma 2.2. ([6], Theorem A ) Let A and B are positive operators.
Then for each p ≥ 0 and r ≥ 0

(B
r
2ApB

r
2 )

r
p+r ≥ Br ⇒ Ap ≥ (A

p
2BrA

p
2 )

p
p+r .

Using the above lemmas we can have the following lemma which is
used for proof of the main theorem.

Lemma 2.3. If T ∈ L (H ) belongs to class A(k), then |T |kU |T | is
1

k+1
-hyponormal, where T = U |T | is the polar decomposition of T .

Proof. Firstly, we claim that(
T ∗|T |2kT

) 1
k+1 ≥ |T |2 ⇔

(
|T ∗||T |2k|T ∗|

) 1
k+1 ≥ |T ∗|2.

It is well known that T ∗ = U∗|T ∗| is also the polar decomposition of T ∗

if T = U |T | is the polar decomposition of T . Suppose that(
T ∗|T |2kT

) 1
k+1 ≥ |T |2.
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Then we have(
|T ∗||T |2k|T ∗|

) 1
k+1 = UU∗ (|T ∗||T |2k|T ∗|

) 1
k+1 UU∗

= U
(
U∗|T ∗||T |2k|T ∗|U

) 1
k+1 U∗

= U
(
T ∗|T |2kT

) 1
k+1 U∗

≥ U |T |2U∗ = |T ∗|2.

Conversely, suppose that(
|T ∗||T |2k|T ∗|

) 1
k+1 ≥ |T ∗|2.

Then we have (
T ∗|T |2kT

) 1
k+1 =

(
U∗|T ∗||T |2k|T ∗|U

) 1
k+1

= U∗ (|T ∗||T |2k|T ∗|
) 1

k+1 U

≥ U∗|T ∗|2U = |T |2.

Now let T̃ = |T |kU |T |. Since T belongs to class A(k) by assumption,(
|T ∗||T |2k|T ∗|

) 1
k+1 ≥ |T ∗|2.

Thus by Lemma 2, we have

|T |2 ≥
(
|T |k|T ∗|2|T |k

) 1
k+1

=
(
|T |kTT ∗|T |k

) 1
k+1

=
(
|T |kU |T |2U∗|T |k

) 1
k+1

= (T̃ T̃ ∗)
1

k+1 .

Therefore

(T̃ ∗T̃ )
1

k+1 =
(
|T |U∗|T |2kU |T |

) 1
k+1

=
(
T ∗|T |2kT

) 1
k+1

≥ |T |2

≥ (T̃ T̃ ∗)
1

k+1 .

Hence T̃ is 1
k+1

-hyponormal.
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Lemma 2.4. ([12], Lemma 5) If T ∈ L (H ) is an operator such that
T = V |T | with partial isometric operator V , then for s ≥ t ≥ 0

σ
(
|T |tV |T |s−t

)
= σ (V |T |s) .

We are ready for proving the main theorem.

Theorem 2.5. The spectrum σ is continuous when restricted to the
set of class A(k) operators.

Proof. Suppose that T and Tn for n ∈ N belong to class A(k) and T =
U |T | and Tn = Un|Tn| are polar decompositions of T and Tn, respectively.
Suppose that Tn converges to T . By the Lemma 2.1, Lemma 2.3 and
Lemma 2.4, it is sufficient to show that

σ
(
U |T |k+1

)
= {rk+1eiθ : reiθ ∈ σ(T )}.

Let T (k) = U |T |k+1. Then since |T (k)| = |T |k+1 and |T (k)∗| = |T ∗|k+1,
we have

T belongs to class A(k)

⇐⇒
(
|T ∗||T |2k|T ∗|

) 1
k+1 ≥ |T ∗|2

⇐⇒
(
|T (k)∗|

1
k+1 |T (k)|

2k
k+1 |T (k)∗|

1
k+1

) 1
k+1 ≥ |T (k)∗|

2
k+1

⇐⇒ T (k) belongs to class A(
k

k + 1
,

1

k + 1
)

=⇒ T (k) belongs to class A.

Now applying the Cho and Yamazaki’s argument (the proof of ([6], The-
orem 2.2)): if T (t) = U |T |t+1 and τt

(
reiθ

)
= rt+1eiθ, and if T (t) belongs

to the class A, then σ(T (t)) = τt(σ(T )) for all t ∈ [0, 1], we have the
result.
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