ON THE FIELD EQUATIONS IN $g-E S X_{n}$

In Ho Hwang

Abstract

This paper is a direct continuation of [1] and [2]. In this paper we investigate some properties of ES-curvature tensor and contracted ES-curvature tensor of $g-E S X_{n}$. Also, we study the field equations in the n-dimensional ES manifold $g-E S X_{n}$.

1. Preliminaries

This paper is a direct continuation of our previous paper [1] and [2], which will be denoted by I in the present paper. All considerations in this paper are based on our results and symbolism of $\mathrm{I}([1],[2],[3],[4]$, [5], [6], [7], [8], [9]). Whenever necessary, these results will be quoted in the text. In this section, we introduce a brief collection of basic concepts, notations, and results of I, which are frequently used in the present paper.

(a) generalized n-dimensional Riemannian manifold X_{n}

Let X_{n} be a generalized n-dimensional Riemannian manifold referred to a real coordinate system x^{ν}, which obeys the coordinate transformations $x^{\nu} \rightarrow x^{\nu^{\prime}}$ for which

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial x^{\prime}}{\partial x}\right) \neq 0 \tag{1.1}
\end{equation*}
$$

Received February 19, 2013. Revised March 10, 2013. Accepted March 15, 2013. 2010 Mathematics Subject Classification: 83E50, 83C05, 58A05.
Key words and phrases: ES-manifold, curvature tensor, field equation.
This research was supported by University of Incheon Research Grant, 2011-2012.
(c) The Kangwon-Kyungki Mathematical Society, 2013.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

In $n-g-U F T$ the manifold X_{n} is endowed with a real nonsymmetric tensor $g_{\lambda \mu}$, which may be decomposed into its symmetric part $h_{\lambda \mu}$ and skew-symmetric part $k_{\lambda \mu}$:

$$
\begin{equation*}
g_{\lambda \mu}=h_{\lambda \mu}+k_{\lambda \mu} . \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{g}=\operatorname{det}\left(g_{\lambda \mu}\right) \neq 0, \quad \mathfrak{h}=\operatorname{det}\left(h_{\lambda \mu}\right) \neq 0, \quad \mathfrak{k}=\operatorname{det}\left(k_{\lambda \mu}\right) . \tag{1.3}
\end{equation*}
$$

In virtue of (1.3) we may define a unique tensor $h^{\lambda \nu}$ by

$$
\begin{equation*}
h_{\lambda \mu} h^{\lambda \nu}=\delta_{\mu}^{\nu} . \tag{1.4}
\end{equation*}
$$

which together with $h_{\lambda \mu}$ will serve for raising and/or lowering indices of tensors in X_{n} in the usual manner. There exists a unique tensor $* g^{\lambda \nu}$ satisfying

$$
\begin{equation*}
g_{\lambda \mu}{ }^{*} g^{\lambda \nu}=g_{\mu \lambda}{ }^{*} g^{\nu \lambda}=\delta_{\mu}^{\nu} . \tag{1.5}
\end{equation*}
$$

It may be also decomposed into its symmetric part ${ }^{*} h^{\lambda \nu}$ and skewsymmetric part ${ }^{*} k^{\lambda \nu}$:

$$
\begin{equation*}
{ }^{*} g^{\lambda \nu}={ }^{*} h^{\lambda \nu}+{ }^{*} k^{\lambda \nu} . \tag{1.6}
\end{equation*}
$$

The manifold X_{n} is connected by a general real connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ with the following transformation rule:

$$
\begin{equation*}
\Gamma_{\lambda^{\prime}}^{\nu^{\prime}}{ }_{\mu^{\prime}}=\frac{\partial x^{\nu^{\prime}}}{\partial x^{\alpha}}\left(\frac{\partial x^{\beta}}{\partial x^{\lambda^{\prime}}} \frac{\partial x^{\gamma}}{\partial x^{\mu^{\prime}}} \Gamma_{\beta}{ }^{\alpha}{ }_{\gamma}+\frac{\partial^{2} x^{\alpha}}{\partial x^{\lambda^{\prime}} \partial x^{\mu^{\prime}}}\right) . \tag{1.7}
\end{equation*}
$$

It may also be decomposed into its symmetric part $\Lambda_{\lambda}{ }^{\nu}{ }_{\mu}$ and its skewsymmetric part $S_{\lambda \nu}{ }^{\nu}$, called the torsion tensor of $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$:
(1.8) $\quad \Gamma_{\lambda}{ }^{\nu}{ }_{\mu}=\Lambda_{\lambda}{ }^{\nu}{ }_{\mu}+S_{\lambda \mu}{ }^{\nu} ; \quad \Lambda_{\lambda}{ }^{\nu}{ }_{\mu}=\Gamma_{(\lambda}{ }^{\nu}{ }_{\mu)} ; \quad S_{\lambda \mu}{ }^{\nu}=\Gamma_{[\lambda}{ }^{\nu}{ }_{\mu]}$.

A connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ is said to be Einstein if it satisfies the following system of Einstein's equations:

$$
\begin{equation*}
\partial_{\omega} g_{\lambda \mu}-\Gamma_{\lambda}{ }^{\alpha}{ }_{\omega} g_{\alpha \mu}-\Gamma_{\omega}{ }^{\alpha}{ }_{\mu} g_{\lambda \alpha}=0 . \tag{1.9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
D_{\omega} g_{\lambda \mu}=2 S_{\omega \mu}{ }^{\alpha} g_{\lambda \alpha} . \tag{1.10}
\end{equation*}
$$

where D_{ω} is the symbolic vector of the covariant derivative with respect to $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$. In order to obtain $g_{\lambda \mu}$ involved in the solution for $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ in (1.9), certain conditions are imposed. These conditions may be condensed to

$$
\begin{equation*}
S_{\lambda}=S_{\lambda \alpha}{ }^{\alpha}=0, \quad R_{[\mu \lambda]}=\partial_{[\mu} Y_{\lambda]}, \quad R_{(\mu \lambda)}=0 . \tag{1.11}
\end{equation*}
$$

where Y_{λ} is an arbitrary vector, and

$$
\begin{equation*}
R_{\omega \mu \lambda}{ }^{\nu}=2\left(\partial_{[\mu} \Gamma_{|\lambda|}{ }^{\nu} \omega\right]+\Gamma_{\alpha}{ }^{\nu}\left[\mu \Gamma_{|\lambda|}{ }^{\alpha}{ }_{\omega]}\right) . \tag{1.12}
\end{equation*}
$$

If the system (1.10) admits a solution $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$, it must be of the form (Hlavatý, 1957)

$$
\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}=\left\{\begin{array}{l}
\nu \tag{1.13}\\
\lambda \mu
\end{array}\right\}+S_{\lambda \mu}^{\nu}+U_{\lambda \mu}^{\nu}
$$

where $U^{\nu}{ }_{\lambda \mu}=2 h^{\nu \alpha} S_{\alpha(\lambda}{ }^{\beta} k_{\mu) \beta}$ and $\left\{\begin{array}{l}\nu \\ \lambda \mu\end{array}\right\}$ are Christoffel symbols defined by $h_{\lambda \mu}$.

(b) Some notations and results

The following quantities are frequently used in our further considerations:

$$
\begin{gather*}
g=\frac{\mathfrak{g}}{\mathfrak{h}}, \quad k=\frac{\mathfrak{k}}{\mathfrak{h}} . \tag{1.14}\\
K_{p}=k_{\left[\alpha_{1}\right.}{ }^{\alpha_{1}} k_{\alpha_{2}}{ }^{\alpha_{2}} \cdots k_{\left.\alpha_{p}\right]}{ }^{\alpha^{p}}, \quad(p=0,1,2, \cdots) . \tag{1.15}\\
{ }^{(0)} k_{\lambda}^{\nu}=\delta_{\lambda}^{\nu},{ }^{(p)} k_{\lambda}^{\nu}=k_{\lambda}{ }^{\alpha}{ }^{(p-1)} k_{\alpha}{ }^{\nu} \quad(p=1,2, \cdots) . \tag{1.16}
\end{gather*}
$$

In X_{n} it was proved in [5] that
(1.17) $K_{0}=1, K_{n}=k$ if n is even, and $\mathrm{K}_{\mathrm{p}}=0$ if p is odd.

$$
\begin{align*}
& \tag{1.18}\\
& \mathfrak{g}
\end{align*}=\mathfrak{h}\left(1+K_{1}+K_{2}+\cdots+K_{n}\right)
$$

$$
\begin{equation*}
\sum_{s=0}^{n-\sigma} K_{s}{ }^{(n-s+p)} k_{\lambda}^{\nu}=0 \quad(p=0,1,2, \cdots) \tag{1.19}
\end{equation*}
$$

We also use the following useful abbreviations for an arbitrary vector Y, for $p=1,2,3, \cdots$:

$$
\begin{align*}
& { }^{(p)} Y_{\lambda}={ }^{(p-1)} k_{\lambda}{ }^{\alpha} Y_{\alpha} . \tag{1.20}\\
& { }^{(p)} Y^{\nu}={ }^{(p-1)} k^{\nu}{ }_{\alpha} Y^{\alpha} . \tag{1.21}
\end{align*}
$$

(c) n-dimensional $E S$ manifold $E S X_{n}$

In this subsection, we display an useful representation of the $E S$ connection in n - g-UFT.

Definition 1.1. A connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ is said to be semi-symmetric if its torsion tensor $S_{\lambda \mu}{ }^{\nu}$ is of the form

$$
\begin{equation*}
S_{\lambda \mu}{ }^{\nu}=2 \delta_{[\lambda}^{\nu} X_{\mu]} \tag{1.22}
\end{equation*}
$$

for an arbitrary non-null vector X_{μ}.
A connection which is both semi-symmetric and Einstein is called an $E S$ connection. An n-dimensional generalized Riemannian manifold X_{n}, on which the differential geometric structure is imposed by $g_{\lambda \mu}$ by means of an $E S$ connection, is called an n-dimensional $E S$ manifold. We denote this manifold by $g-E S X_{n}$ in our further considerations.

Theorem 1.2. Under the condition (1.22), the system of equations (1.10) is equivalent to

$$
\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}=\left\{\begin{array}{c}
\nu \tag{1.23}\\
\lambda \mu
\end{array}\right\}+2 k_{(\lambda}^{\nu} X_{\mu)}+2 \delta_{[\lambda}^{\nu} X_{\mu]} .
$$

Proof. Substituting (1.22) for $S_{\lambda \mu}{ }^{\nu}$ into (1.13), we have the representation (1.23).

In $g-E S X_{n}$, the following theorem was proved in [1]:
Theorem 1.3. In $g-E S X_{n}$, the following relations hold for $p, q=$ $1,2,3, \cdots$:

$$
\begin{gather*}
S_{\lambda}=(1-n) X_{\lambda} \tag{1.24}\\
U_{\lambda}=\frac{1}{2} \partial_{\lambda} l n \mathfrak{g} . \tag{1.25}\\
{ }^{(p+1)} S_{\lambda}=(1-n)^{(p)} U_{\lambda} . \tag{1.26}\\
{ }^{(p)} U_{\alpha}^{(q)} X^{\alpha}=0 \quad \text { if } \quad p+q-1 \quad \text { is } \quad \text { odd } . \tag{1.27}\\
D_{\lambda} X_{\mu}=\nabla_{\lambda} X_{\mu} \tag{1.28}\\
D_{[\lambda} X_{\mu]}=\nabla_{[\lambda} X_{\mu]}=\partial_{[\lambda} X_{\mu]} . \\
\nabla_{[\lambda} U_{\mu]}=0, \quad D_{[\lambda} U_{\mu]}=2 U_{[\lambda} X_{\mu]}=2^{(2)} X_{[\lambda} X_{\mu]} .
\end{gather*}
$$

where ∇_{ω} is the symbolic vector of the covariant derivative with respect to the Christoffel symbols defined by $h_{\lambda \mu}$.

2. The ES curvature tensor and the contracted ES curvature tensor in $g-E S X_{n}$

This chapter is devoted to the study of the ES curvature tensor and the contracted ES curvature tensors in $g-E S X_{n}$ and of some useful identities involving them.

Theorem 2.1. In $g-E S X_{n}$, the ES curvature tensor $R_{\omega \mu \lambda}{ }^{\nu}$ may be given by

$$
\begin{equation*}
R_{\omega \mu \lambda}{ }^{\nu}=L_{\omega \mu \lambda}{ }^{\nu}+M_{\omega \mu \lambda}{ }^{\nu}+N_{\omega \mu \lambda}{ }^{\nu} . \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gather*}
L_{\omega \mu \lambda}{ }^{\nu}=2\left(\partial_{[\mu}\left\{\begin{array}{c}
\nu \\
\omega] \lambda
\end{array}\right\}+\left\{\begin{array}{c}
\nu \\
\alpha[\mu
\end{array}\right\}\left\{\begin{array}{c}
\alpha \\
\omega] \lambda
\end{array}\right\}\right) . \tag{2.2}\\
M_{\omega \mu \lambda}{ }^{\nu}=2\left(\delta_{\lambda}^{\nu} \partial_{[\mu} X_{\omega]}+\delta_{[\mu}^{\nu} \nabla_{\omega]} X_{\lambda}+\nabla_{[\mu} U^{\nu}{ }_{\omega] \lambda}\right) . \tag{2.3}\\
N_{\omega \mu \lambda}{ }^{\nu}=2\left(\delta_{[\omega}^{\nu} X_{\mu]} X_{\lambda}+{ }^{(2)} X_{\lambda} k_{[\mu}{ }^{\nu} X_{\omega]}\right) . \tag{2.4}
\end{gather*}
$$

Proof. Substitute (1.13) into (1.12) and make use of (2.2) to obtain

$$
\begin{aligned}
R_{\omega \mu \lambda}{ }^{\nu} & =2 \partial_{[\mu}\left(\left\{\begin{array}{c}
\nu \\
\omega] \lambda
\end{array}\right\}+X_{\omega]} \delta_{\lambda}^{\nu}-\delta_{\omega]}^{\nu} X_{\lambda}+U^{\nu}{ }_{\omega] \lambda}\right) \\
& +2\left(\left\{\begin{array}{c}
\nu \\
\alpha[\mu
\end{array}\right\}+\delta_{\alpha}^{\nu} X_{[\mu}-X_{\alpha} \delta_{[\mu}^{\nu}+U^{\nu}{ }_{\alpha[\mu}\right) \\
& \times\left(\left\{\begin{array}{c}
\alpha \\
\omega] \lambda
\end{array}\right\}+X_{\omega]} \delta_{\lambda}^{\alpha}-\delta_{\omega]}^{\alpha} X_{\lambda}+U^{\alpha}{ }_{\omega] \lambda \lambda}\right) \\
5) & =L_{\omega \mu \lambda}{ }^{\nu}+2 \delta_{\lambda}^{\nu} \partial_{[\mu} X_{\omega]}+2\left(\delta_{[\mu}^{\nu} \partial_{\omega]} X_{\lambda}-\delta_{[\mu}^{\nu}\left\{\begin{array}{c}
\alpha \\
\omega] \lambda
\end{array}\right\} X_{\alpha}\right) \\
& +2\left(\partial_{[\mu} U^{\nu}{ }_{\omega]]}+\left\{\begin{array}{c}
\alpha \\
\lambda[\omega
\end{array}\right\} U^{\nu}{ }_{\mu] \alpha}+\left\{\begin{array}{c}
\nu \\
\alpha[\mu
\end{array}\right\} U^{\alpha}{ }_{\omega] \lambda}\right) \\
& +2\left(\delta_{[\omega}^{\nu} X_{\mu]} X_{\lambda}-X_{\alpha} \delta_{[\mu}^{\nu} U^{\alpha}{ }_{\omega] \lambda}+U^{\nu}{ }_{\alpha[\mu} U^{\alpha}{ }_{\omega] \lambda}\right)
\end{aligned}
$$

In virtue of (1.22), the sum of the second, third and fourth terms on the right-hand side of (2.5) is $M_{\omega \mu \lambda}{ }^{\nu}$. On the other hand, using (1.22), (1.25), and (1.27), we have

$$
\begin{gather*}
U^{\nu}{ }_{\lambda \mu}=2 k_{(\lambda}{ }^{\nu} X_{\mu)} \tag{2.6}\\
-X_{\alpha} \delta_{[\mu}^{\nu} U^{\alpha}{ }_{\omega] \lambda}=0 \tag{2.7}\\
U^{\nu}{ }_{\alpha[\mu} U^{\alpha}{ }_{\omega] \lambda}={ }^{(2)} X_{\lambda} k_{[\mu}{ }^{\nu} X_{\omega]} \tag{2.8}
\end{gather*}
$$

Substituting (2.7) and (2.8) into the fifth term of (2.5), we find that it is equal to $N_{\omega \mu \lambda}{ }^{\nu}$. Consequently, our proof of the theorem is completed.

The tensors

$$
\begin{equation*}
R_{\mu \lambda}=R_{\alpha \mu \lambda}{ }^{\alpha}, \quad V_{\omega \mu}=R_{\omega \mu \alpha}{ }^{\alpha} . \tag{2.9}
\end{equation*}
$$

are called the first and second contracted ES curvature tensors of the ES connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$, respectively. We see in the following two theorems that they appear as functions of the vectors $X_{\lambda}, S_{\lambda}, U_{\lambda}$, and hence also as functions of $g_{\lambda \mu}$ and its first two derivatives in virtue of (1.24), (1.25) and (2.1).

Theorem 2.2. The first contracted ES curvature tensor $R_{\mu \lambda}$ in $g-$ $E S X_{n}$ may be given by

$$
\begin{align*}
R_{\mu \lambda}=L_{\mu \lambda}+2 \partial_{[\mu} X_{\lambda]}+ & \nabla_{\mu} T_{\lambda}-\nabla_{\alpha} U^{\alpha}{ }_{\mu \lambda} \tag{2.10}\\
& +(n-1) X_{\mu} X_{\lambda}+U_{\mu} U_{\lambda} .
\end{align*}
$$

where

$$
\begin{equation*}
L_{\mu \lambda}=L_{\alpha \mu \lambda}{ }^{\alpha} . \tag{2.11}
\end{equation*}
$$

Proof. Putting $\omega=\nu=\alpha$ in (2.1) and making use of (2.11), we have

$$
\begin{equation*}
R_{\mu \lambda}=L_{\mu \lambda}+M_{\alpha \mu \lambda}{ }^{\alpha}+N_{\alpha \mu \lambda}{ }^{\alpha} . \tag{2.13}
\end{equation*}
$$

In virtue of (1.24) and (1.25), it follows from (2.3) that

$$
\begin{align*}
M_{\alpha \mu \lambda}{ }^{\alpha} & =2 \partial_{[\mu} X_{\lambda]}+(1-n) \nabla_{\mu} X_{\lambda}+\nabla_{\mu} U_{\lambda}-\nabla_{\alpha} U^{\alpha}{ }_{\mu \lambda} \tag{2.14}\\
& =2 \partial_{[\mu} X_{\lambda]}+\nabla_{\mu} T_{\lambda}-\nabla_{\alpha} U^{\alpha}{ }_{\mu \lambda} .
\end{align*}
$$

On the other hand, in virtue of (1.25) the relation (2.4) gives

$$
\begin{align*}
N_{\alpha \mu \lambda}{ }^{\alpha} & =(n-1) X_{\mu} X_{\lambda}+{ }^{(2)} X_{\mu}^{(2)} X_{\lambda}-{ }^{(2)} X_{\lambda} X_{\mu} k_{\alpha}{ }^{\alpha} \tag{2.15}\\
& =(n-1) X_{\mu} X_{\lambda}+U_{\mu} U_{\lambda} .
\end{align*}
$$

Our assertion follows immediately from (2.13), (2.14) and (2.15).

Theorem 2.3. The second contracted ES curvature tensor $V_{\omega \mu}$ in $g-E S X_{n}$ is a curl of the vector S_{λ}. That is,

$$
\begin{equation*}
V_{\omega \mu}=2 \partial_{[\omega} S_{\mu]} . \tag{2.16}
\end{equation*}
$$

Proof. Putting $\lambda=\nu=\alpha$ in (2.1), we have

$$
\begin{equation*}
V_{\omega \mu}=L_{\omega \mu \alpha}{ }^{\alpha}+M_{\omega \mu \alpha}{ }^{\alpha}+N_{\omega \mu \alpha}{ }^{\alpha} . \tag{2.17}
\end{equation*}
$$

In virtue of (1.11), (1.24), (1.25) and (1.30), the relations (2.2), (2.3) and (2.4) give

$$
L_{\omega \mu \alpha}{ }^{\alpha}=N_{\omega \mu \alpha}{ }^{\alpha}=0
$$

$$
M_{\omega \mu \alpha}{ }^{\alpha}=2(1-n) \partial_{[\omega} X_{\mu]}+2 \nabla_{[\mu} U_{\omega]}=2(1-n) \partial_{[\omega} X_{\mu]}=2 \partial_{[\omega} S_{\mu]}
$$

which together with (2.17) proves our assertion.
Theorem 2.4. The tensor $R_{\mu \lambda}$ is symmetric when $n=3$.
Proof. The relation (2.10) may be written as

$$
\begin{align*}
R_{\mu \lambda}= & L_{\mu \lambda}+(3-n) \nabla_{\mu} X_{\lambda}-2 \nabla_{(\mu} X_{\lambda)}+\nabla_{\mu} U_{\lambda} \tag{2.18}\\
& -\nabla_{\alpha} U^{\alpha}{ }_{\mu \lambda}+(n-1) X_{\mu} X_{\lambda}+U_{\mu} U_{\lambda} .
\end{align*}
$$

where use has been made of (1.24), (1.29) and (2.12). Hence, in virtue of (1.29) and (1.30) we have $R_{[\mu \lambda]}=0$ if and only if $(3-n) \nabla_{[\mu} X_{\lambda]}=$ $(3-n) \partial_{[\mu} X_{\lambda]}=0$

Remark 2.5. In the proof of the Theorem (2.4), we excluded the case that $\partial_{[\mu} X_{\lambda]}=0$, because we assumed that X_{λ} is not a gradient vector in the definition of semi-symmetric connection in (1.22). In fact, the assumption that X_{λ} is not a gradient vector is essential in the discussions of the field equations in $g-E S X_{n}$.

Theorem 2.6. The contracted ES curvature tensors in $g-E S X_{n}$ are related by

$$
\begin{equation*}
2 R_{[\mu \lambda]}=4 \partial_{[\mu} X_{\lambda]}+V_{\mu \lambda} . \tag{2.19}
\end{equation*}
$$

Proof. In virtue of (1.24), (1.29) and (1.30), the relation (2.19) may be proved from (2.18) as in the following way:

$$
\begin{align*}
2 R_{[\mu \lambda]} & =2(3-n) \partial_{[\mu} X_{\lambda]} \tag{2.20}\\
& =2(1-n) \partial_{[\mu} X_{\lambda]}+4 \partial_{[\mu} X_{\lambda]} \\
& =2 \partial_{[\mu} S_{\lambda]}+4 \partial_{[\mu} X_{\lambda]} \\
& =V_{\mu \lambda}+4 \partial_{[\mu} X_{\lambda]} .
\end{align*}
$$

3. The field equations in $g-E S X_{n}$

By field equations we mean a set of partial equations for $g_{\lambda \mu}$. In the present section we are concerned with the geometry of field equations in $g-E S X_{n}$ and not with their physical applications. We saw in the previous section that ES curvature tensor $R_{\omega \mu \lambda}{ }^{\nu}$ together with its contracted curvature tensor $R_{\mu \lambda}$ appear as a function of $g_{\lambda \mu}$. In order to obtain the tensor $g_{\lambda \mu}$ with which we started in dealing with (1.9), (1.10) and (1.11), we suggest the following conditions for it in terms of $R_{\mu \lambda}$

$$
\begin{gather*}
R_{[\mu \lambda]}=\partial_{[\mu} X_{\lambda]} \tag{3.1}\\
R_{(\mu \lambda)}=0 \tag{3.2}
\end{gather*}
$$

where X_{λ} is an arbitrary vector. The conditions (3.1) and (3.2) represent a system of n^{2} differential equations of the second order for $g_{\lambda \mu}$.

The unified field theory in the n-dimensional ES manifold $E S X_{n}$ is governed by the following set of equations: n^{3} equations (1.10) under the conditions (1.22), which determine the unique ES connection $\Gamma_{\lambda \mu}{ }^{\nu}$, and n^{2} field equations (3.1) and (3.2) for n^{2} unknowns $g_{\lambda \mu}$. In Theorem (3.3), it states that the unknowns Y_{λ} are uniquely determined in $E S X_{n}$. The conditions (3.1) and (3.2) are of a purely geometrical nature and physical interpretation is not involved in them a priori. Einstein suggested several different sets of field equations in his four-dimensional unified field theory. It would seem natural to follow the analogy of Einstein's field equations (1.11) in our manifold $E S X_{n}$, too. However, the restriction $S_{\lambda}=0$ is too strong in our unified field theory in the ES manifold $E S X_{n}$,
since this condition implies $X_{\lambda}=0$ and hence $\Gamma_{\lambda \mu}{ }^{\nu}=\left\{\begin{array}{l}\nu \\ \lambda \mu\end{array}\right\}$ in virtue of (1.23) and (1.24). Therefore, we shall not adopt (1.11) as a starting point, exclude the condition $S_{\lambda}=0$, and impose the field equations in $E S X_{n}$ as given in (3.1) and (3.2).

REMARK 3.1. In our further considerations we restrict ourselves to the conditions

$$
\begin{equation*}
X_{\lambda} \neq 0 \quad \text { and } \quad X_{\lambda} \quad \text { not } \quad \text { a } \quad \text { gradient vector } \tag{3.3}
\end{equation*}
$$

This restriction is quite natural in view of (3.1) and (3.2) and Remark (3.1). The first consequence of (3.3) is the following theorem.

Theorem 3.2. In $g-E S X_{n}$ we have

$$
\begin{equation*}
U^{\nu}{ }_{\lambda \mu} \neq 0 \tag{3.4}
\end{equation*}
$$

Proof. Assume that $U^{\nu}{ }_{\lambda \mu} \neq 0$. Then (1.22) implies that

$$
\begin{equation*}
k_{\lambda \nu} X_{\mu}+k_{\mu \nu} X_{\lambda}=0 \text { for every } \lambda, \mu, \nu \tag{3.5}
\end{equation*}
$$

In virtue of the condition (3.3), there exists at least one fixed index δ such that $X_{\delta} \neq 0$. Hence

$$
\begin{equation*}
k_{\lambda \nu} X_{\delta}+k_{\delta \nu} X_{\lambda}=0 \text { for every } \lambda, \nu \tag{3.6}
\end{equation*}
$$

Putting $\lambda=\delta$ in (3.6), we have $k_{\delta \nu}=0$ for every ν. If $\lambda \neq \delta$, then $k_{\lambda \nu}=0$ for every ν, since $k_{\delta \nu}=0$. Hence we have

$$
\begin{equation*}
k_{\lambda \nu}=0 \text { for every } \lambda, \nu \tag{3.7}
\end{equation*}
$$

which is a contradiction to the non-symmetry of $g_{\lambda \mu}$.
Theorem 3.3. In $g-E S X_{n}$, the field equation (3.1) is satisfied by a unique vector Y_{λ} given by

$$
\begin{equation*}
Y_{\lambda}=(3-n) X_{\lambda} \tag{3.8}
\end{equation*}
$$

when $n \neq 3$
Proof. In virtue of (2.18), we have

$$
R_{[\mu \lambda]}=(3-n) \partial_{[\mu} X_{\lambda]}
$$

from which (3.8) follows.

Theorem 3.4. In $g-E S X_{n}$, the field equation (3.2) is equivalent to

$$
\begin{equation*}
L_{\mu \lambda}+\nabla_{(\mu} T_{\lambda)}-\nabla_{\alpha} U^{\alpha}{ }_{\mu \lambda}+(n-1) X_{\mu} X_{\lambda}+U_{\mu} U_{\lambda}=0 \tag{3.9}
\end{equation*}
$$

Proof. (3.9) is a immediate consequence of (2.10) and (3.2).

References

[1] Hwang, I.H., A study on the recurrence relations and vectors X_{λ}, S_{λ} and U_{λ} in $g-E S X_{n}$, Korean J. Math. 18 2010, No.2, 133-139
[2] Hwang, I.H., On the ES curvature tensor in in $g-E S X_{n}$, Korean J. Math. 19 2011, No.1, 25-32
[3] Hwang, I.H., A study on the geometry of 2-dimensional $R E$-manifold X_{2}, J. Korean Math. Soc., 32 1995, No.2, 301-309
[4] Hwang, I.H., Three- and Five- dimensional considerations of the geometry of Einstein's g-unified field theory, Int.J. Theor. Phys., 27 1988, No.9, 1105-1136
[5] Chung, K.T., Einstein's connection in terms of ${ }^{*} g^{\lambda \nu}$, Nuovo cimento Soc. Ital. Fis. B, 27 1963, (X), 1297-1324
[6] Datta, D.k., Some theorems on symmetric recurrent tensors of the second order, Tensor (N.S.) 15 1964, 1105-1136
[7] Einstein, A., The meaning of relativity, Princeton University Press, 1950
[8] Hlavatý, V., Geometry of Einstein's unified field theory, Noordhoop Ltd., 1957
[9] Mishra, R.S., n-dimensional considerations of unified field theory of relativity, Tensor 9 1959, 217-225

Department of Mathematics
University of Incheon
Incheon 406-772, Korea
E-mail: ho818@incheon.ac.kr

