Korean J. Math. **21** (2013), No. 1, pp. 91–100 http://dx.doi.org/10.11568/kjm.2013.21.1.91

ON THE FIELD EQUATIONS IN $g - ESX_n$

IN HO HWANG

ABSTRACT. This paper is a direct continuation of [1] and [2]. In this paper we investigate some properties of ES-curvature tensor and contracted ES-curvature tensor of $g - ESX_n$. Also, we study the field equations in the *n*-dimensional ES manifold $g - ESX_n$.

1. Preliminaries

This paper is a direct continuation of our previous paper [1] and [2], which will be denoted by I in the present paper. All considerations in this paper are based on our results and symbolism of I([1], [2], [3], [4], [5], [6], [7], [8], [9]). Whenever necessary, these results will be quoted in the text. In this section, we introduce a brief collection of basic concepts, notations, and results of I, which are frequently used in the present paper.

(a) generalized *n*-dimensional Riemannian manifold X_n

Let X_n be a generalized *n*-dimensional Riemannian manifold referred to a real coordinate system x^{ν} , which obeys the coordinate transformations $x^{\nu} \to x^{\nu'}$ for which

(1.1)
$$\det\left(\frac{\partial x'}{\partial x}\right) \neq 0$$

Received February 19, 2013. Revised March 10, 2013. Accepted March 15, 2013. 2010 Mathematics Subject Classification: 83E50, 83C05, 58A05.

Key words and phrases: ES-manifold, curvature tensor, field equation.

This research was supported by University of Incheon Research Grant, 2011-2012. © The Kangwon-Kyungki Mathematical Society, 2013.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

In n - g - UFT the manifold X_n is endowed with a real nonsymmetric tensor $g_{\lambda\mu}$, which may be decomposed into its symmetric part $h_{\lambda\mu}$ and skew-symmetric part $k_{\lambda\mu}$:

(1.2)
$$g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu}$$

where

(1.3)
$$\mathfrak{g} = \det(g_{\lambda\mu}) \neq 0, \quad \mathfrak{h} = \det(h_{\lambda\mu}) \neq 0, \quad \mathfrak{k} = \det(k_{\lambda\mu}).$$

In virtue of (1.3) we may define a unique tensor $h^{\lambda\nu}$ by

(1.4)
$$h_{\lambda\mu}h^{\lambda\nu} = \delta^{\nu}_{\mu}$$

which together with $h_{\lambda\mu}$ will serve for raising and/or lowering indices of tensors in X_n in the usual manner. There exists a unique tensor $*g^{\lambda\nu}$ satisfying

(1.5)
$$g_{\lambda\mu}{}^*g^{\lambda\nu} = g_{\mu\lambda}{}^*g^{\nu\lambda} = \delta^{\nu}_{\mu}.$$

It may be also decomposed into its symmetric part ${}^*h^{\lambda\nu}$ and skew-symmetric part ${}^*k^{\lambda\nu}$:

(1.6)
$${}^*g^{\lambda\nu} = {}^*h^{\lambda\nu} + {}^*k^{\lambda\nu}.$$

The manifold X_n is connected by a general real connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ with the following transformation rule:

(1.7)
$$\Gamma_{\lambda'}{}^{\nu'}{}_{\mu'} = \frac{\partial x^{\nu'}}{\partial x^{\alpha}} \left(\frac{\partial x^{\beta}}{\partial x^{\lambda'}} \frac{\partial x^{\gamma}}{\partial x^{\mu'}} \Gamma_{\beta}{}^{\alpha}{}_{\gamma} + \frac{\partial^2 x^{\alpha}}{\partial x^{\lambda'} \partial x^{\mu'}} \right).$$

It may also be decomposed into its symmetric part $\Lambda_{\lambda}{}^{\nu}{}_{\mu}$ and its skewsymmetric part $S_{\lambda\nu}{}^{\nu}$, called the torsion tensor of $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$:

(1.8)
$$\Gamma_{\lambda}{}^{\nu}{}_{\mu} = \Lambda_{\lambda}{}^{\nu}{}_{\mu} + S_{\lambda\mu}{}^{\nu}; \quad \Lambda_{\lambda}{}^{\nu}{}_{\mu} = \Gamma_{(\lambda}{}^{\nu}{}_{\mu)}; \quad S_{\lambda\mu}{}^{\nu} = \Gamma_{[\lambda}{}^{\nu}{}_{\mu]}.$$

A connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ is said to be Einstein if it satisfies the following system of Einstein's equations:

(1.9)
$$\partial_{\omega}g_{\lambda\mu} - \Gamma_{\lambda}{}^{\alpha}{}_{\omega}g_{\alpha\mu} - \Gamma_{\omega}{}^{\alpha}{}_{\mu}g_{\lambda\alpha} = 0.$$

or equivalently

(1.10)
$$D_{\omega}g_{\lambda\mu} = 2S_{\omega\mu}{}^{\alpha}g_{\lambda\alpha}.$$

where D_{ω} is the symbolic vector of the covariant derivative with respect to $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$. In order to obtain $g_{\lambda\mu}$ involved in the solution for $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ in (1.9), certain conditions are imposed. These conditions may be condensed to

(1.11)
$$S_{\lambda} = S_{\lambda\alpha}{}^{\alpha} = 0, \quad R_{[\mu\lambda]} = \partial_{[\mu}Y_{\lambda]}, \quad R_{(\mu\lambda)} = 0.$$

where Y_{λ} is an arbitrary vector, and

(1.12)
$$R_{\omega\mu\lambda}{}^{\nu} = 2(\partial_{[\mu}\Gamma_{|\lambda|}{}^{\nu}{}_{\omega]} + \Gamma_{\alpha}{}^{\nu}{}_{[\mu}\Gamma_{|\lambda|}{}^{\alpha}{}_{\omega]}).$$

If the system (1.10) admits a solution $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$, it must be of the form (Hlavatý, 1957)

(1.13)
$$\Gamma_{\lambda}^{\ \nu}{}_{\mu} = \left\{ \begin{array}{c} \nu\\ \lambda \mu \end{array} \right\} + S_{\lambda \mu}^{\ \nu} + U^{\nu}{}_{\lambda \mu}.$$

where $U^{\nu}_{\lambda\mu} = 2h^{\nu\alpha}S_{\alpha(\lambda}{}^{\beta}k_{\mu)\beta}$ and $\left\{\begin{array}{c}\nu\\\lambda\mu\end{array}\right\}$ are Christoffel symbols defined by $h_{\lambda\mu}$.

(b) Some notations and results

The following quantities are frequently used in our further considerations:

(1.14)
$$g = \frac{\mathfrak{g}}{\mathfrak{h}}, \quad k = \frac{\mathfrak{k}}{\mathfrak{h}}.$$

(1.15)
$$K_p = k_{[\alpha_1}{}^{\alpha_1} k_{\alpha_2}{}^{\alpha_2} \cdots k_{\alpha_p]}{}^{\alpha^p}, \quad (p = 0, 1, 2, \cdots).$$

(1.16)
$${}^{(0)}k_{\lambda}{}^{\nu} = \delta_{\lambda}^{\nu}, \; {}^{(p)}k_{\lambda}{}^{\nu} = k_{\lambda}{}^{\alpha} \; {}^{(p-1)}k_{\alpha}{}^{\nu} \; (p = 1, 2, \cdots).$$

In X_n it was proved in [5] that

(1.17) $K_0 = 1$, $K_n = k$ if n is even, and $K_p = 0$ if p is odd.

(1.18)
$$\mathfrak{g} = \mathfrak{h}(1 + K_1 + K_2 + \dots + K_n)$$

or $g = 1 + K_1 + K_2 + \dots + K_n.$

(1.19)
$$\sum_{s=0}^{n-\sigma} K_s^{(n-s+p)} k_{\lambda}^{\nu} = 0 \quad (p=0,1,2,\cdots).$$

We also use the following useful abbreviations for an arbitrary vector Y, for $p = 1, 2, 3, \cdots$:

(1.20)
$${}^{(p)}Y_{\lambda} = {}^{(p-1)}k_{\lambda}{}^{\alpha}Y_{\alpha}$$

(1.21)
$${}^{(p)}Y^{\nu} = {}^{(p-1)} k^{\nu}{}_{\alpha}Y^{\alpha}.$$

(c) *n*-dimensional ES manifold ESX_n

In this subsection, we display an useful representation of the ES connection in n-g-UFT.

DEFINITION 1.1. A connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ is said to be *semi-symmetric* if its torsion tensor $S_{\lambda\mu}{}^{\nu}$ is of the form

(1.22)
$$S_{\lambda\mu}{}^{\nu} = 2\delta^{\nu}_{[\lambda}X_{\mu]}$$

for an arbitrary non-null vector X_{μ} .

A connection which is both semi-symmetric and Einstein is called an ES connection. An *n*-dimensional generalized Riemannian manifold X_n , on which the differential geometric structure is imposed by $g_{\lambda\mu}$ by means of an ES connection, is called an *n*-dimensional ES manifold. We denote this manifold by $g - ESX_n$ in our further considerations.

THEOREM 1.2. Under the condition (1.22), the system of equations (1.10) is equivalent to

(1.23)
$$\Gamma_{\lambda \mu}^{\nu} = \left\{ \begin{array}{c} \nu \\ \lambda \mu \end{array} \right\} + 2k_{(\lambda}^{\nu}X_{\mu)} + 2\delta_{[\lambda}^{\nu}X_{\mu]}.$$

Proof. Substituting (1.22) for $S_{\lambda\mu}{}^{\nu}$ into (1.13), we have the representation (1.23).

In $g - ESX_n$, the following theorem was proved in [1]:

THEOREM 1.3. In $g - ESX_n$, the following relations hold for $p, q = 1, 2, 3, \cdots$:

$$(1.24) S_{\lambda} = (1-n)X_{\lambda}$$

(1.25)
$$U_{\lambda} = \frac{1}{2} \partial_{\lambda} ln \mathfrak{g}.$$

(1.26)
$${}^{(p+1)}S_{\lambda} = (1-n)^{(p)}U_{\lambda}.$$

(1.27)
$${}^{(p)}U_{\alpha}{}^{(q)}X^{\alpha} = 0$$
 if $p + q - 1$ is odd.

(1.28)
$$D_{\lambda}X_{\mu} = \nabla_{\lambda}X_{\mu}$$

(1.29)
$$D_{[\lambda}X_{\mu]} = \nabla_{[\lambda}X_{\mu]} = \partial_{[\lambda}X_{\mu]}.$$

(1.30)
$$\nabla_{[\lambda} U_{\mu]} = 0, \qquad D_{[\lambda} U_{\mu]} = 2U_{[\lambda} X_{\mu]} = 2^{(2)} X_{[\lambda} X_{\mu]}.$$

where ∇_{ω} is the symbolic vector of the covariant derivative with respect to the Christoffel symbols defined by $h_{\lambda\mu}$.

2. The ES curvature tensor and the contracted ES curvature tensor in $g - ESX_n$

This chapter is devoted to the study of the ES curvature tensor and the contracted ES curvature tensors in $g - ESX_n$ and of some useful identities involving them.

THEOREM 2.1. In $g - ESX_n$, the ES curvature tensor $R_{\omega\mu\lambda}{}^{\nu}$ may be given by

(2.1)
$$R_{\omega\mu\lambda}{}^{\nu} = L_{\omega\mu\lambda}{}^{\nu} + M_{\omega\mu\lambda}{}^{\nu} + N_{\omega\mu\lambda}{}^{\nu}.$$

where

(2.2)
$$L_{\omega\mu\lambda}{}^{\nu} = 2\left(\partial_{[\mu}\left\{\begin{array}{c}\nu\\\omega]\lambda\end{array}\right\} + \left\{\begin{array}{c}\nu\\\alpha[\mu\end{array}\right\}\left\{\begin{array}{c}\alpha\\\omega]\lambda\end{array}\right\}\right).$$

(2.3)
$$M_{\omega\mu\lambda}{}^{\nu} = 2(\delta^{\nu}_{\lambda}\partial_{[\mu}X_{\omega]} + \delta^{\nu}_{[\mu}\nabla_{\omega]}X_{\lambda} + \nabla_{[\mu}U^{\nu}{}_{\omega]\lambda}).$$

(2.4)
$$N_{\omega\mu\lambda}{}^{\nu} = 2(\delta^{\nu}_{[\omega}X_{\mu]}X_{\lambda} + {}^{(2)}X_{\lambda}k_{[\mu}{}^{\nu}X_{\omega]}).$$

Proof. Substitute (1.13) into (1.12) and make use of (2.2) to obtain

$$R_{\omega\mu\lambda}{}^{\nu} = 2\partial_{[\mu} \left(\begin{cases} \nu \\ \omega]\lambda \end{cases} + X_{\omega]}\delta^{\nu}_{\lambda} - \delta^{\nu}_{\omega]}X_{\lambda} + U^{\nu}_{\omega]\lambda} \right) + 2\left(\begin{cases} \nu \\ \alpha[\mu] \end{cases} + \delta^{\nu}_{\alpha}X_{[\mu} - X_{\alpha}\delta^{\nu}_{[\mu} + U^{\nu}_{\alpha[\mu]} \right) \times \left(\begin{cases} \alpha \\ \omega]\lambda \end{cases} + X_{\omega]}\delta^{\alpha}_{\lambda} - \delta^{\alpha}_{\omega]}X_{\lambda} + U^{\alpha}_{\omega]\lambda} \right) (2.5) = L_{\omega\mu\lambda}{}^{\nu} + 2\delta^{\nu}_{\lambda}\partial_{[\mu}X_{\omega]} + 2\left(\delta^{\nu}_{[\mu}\partial_{\omega]}X_{\lambda} - \delta^{\nu}_{[\mu} \begin{cases} \alpha \\ \omega]\lambda \end{cases} \right) X_{\alpha} \right) + 2\left(\partial_{[\mu}U^{\nu}{}_{\omega]\lambda} + \begin{cases} \alpha \\ \lambda[\omega] \end{cases} U^{\nu}{}_{\mu]\alpha} + \begin{cases} \nu \\ \alpha[\mu] \end{cases} U^{\alpha}{}_{\omega]\lambda} \right) + 2\left(\delta^{\nu}_{[\omega}X_{\mu]}X_{\lambda} - X_{\alpha}\delta^{\nu}_{[\mu}U^{\alpha}{}_{\omega]\lambda} + U^{\nu}{}_{\alpha[\mu}U^{\alpha}{}_{\omega]\lambda} \right) \end{cases}$$

In virtue of (1.22), the sum of the second, third and fourth terms on the right-hand side of (2.5) is $M_{\omega\mu\lambda}^{\nu}$. On the other hand, using (1.22), (1.25), and (1.27), we have

(2.6)
$$U^{\nu}{}_{\lambda\mu} = 2k_{(\lambda}{}^{\nu}X_{\mu})$$

(2.7)
$$-X_{\alpha}\delta^{\nu}_{[\mu}U^{\alpha}{}_{\omega]\lambda}=0$$

(2.8)
$$U^{\nu}{}_{\alpha[\mu}U^{\alpha}{}_{\omega]\lambda} = {}^{(2)} X_{\lambda}k_{[\mu}{}^{\nu}X_{\omega]}$$

Substituting (2.7) and (2.8) into the fifth term of (2.5), we find that it is equal to $N_{\omega\mu\lambda}^{\nu}$. Consequently, our proof of the theorem is completed.

The tensors

(2.9)
$$R_{\mu\lambda} = R_{\alpha\mu\lambda}{}^{\alpha}, \qquad V_{\omega\mu} = R_{\omega\mu\alpha}{}^{\alpha},$$

are called the first and second contracted ES curvature tensors of the ES connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$, respectively. We see in the following two theorems that they appear as functions of the vectors $X_{\lambda}, S_{\lambda}, U_{\lambda}$, and hence also as functions of $g_{\lambda\mu}$ and its first two derivatives in virtue of (1.24), (1.25) and (2.1).

THEOREM 2.2. The first contracted ES curvature tensor $R_{\mu\lambda}$ in $g - ESX_n$ may be given by

(2.10)
$$R_{\mu\lambda} = L_{\mu\lambda} + 2\partial_{[\mu}X_{\lambda]} + \nabla_{\mu}T_{\lambda} - \nabla_{\alpha}U^{\alpha}{}_{\mu\lambda} + (n-1)X_{\mu}X_{\lambda} + U_{\mu}U_{\lambda}$$

where

(2.11)
$$L_{\mu\lambda} = L_{\alpha\mu\lambda}{}^{\alpha}$$

(2.12)
$$T_{\lambda\mu}{}^{\nu} = S_{\lambda\mu}{}^{\nu} + U^{\nu}{}_{\lambda\mu}, \qquad T_{\lambda} = T_{\lambda\alpha}{}^{\alpha} = S_{\lambda} + U_{\lambda}.$$

Proof. Putting $\omega = \nu = \alpha$ in (2.1) and making use of (2.11), we have

(2.13)
$$R_{\mu\lambda} = L_{\mu\lambda} + M_{\alpha\mu\lambda}{}^{\alpha} + N_{\alpha\mu\lambda}{}^{\alpha}.$$

In virtue of (1.24) and (1.25), it follows from (2.3) that

$$(2.14) \quad M_{\alpha\mu\lambda}{}^{\alpha} = 2\partial_{[\mu}X_{\lambda]} + (1-n)\nabla_{\mu}X_{\lambda} + \nabla_{\mu}U_{\lambda} - \nabla_{\alpha}U^{\alpha}{}_{\mu\lambda} = 2\partial_{[\mu}X_{\lambda]} + \nabla_{\mu}T_{\lambda} - \nabla_{\alpha}U^{\alpha}{}_{\mu\lambda}.$$

On the other hand, in virtue of (1.25) the relation (2.4) gives

(2.15)
$$N_{\alpha\mu\lambda}{}^{\alpha} = (n-1)X_{\mu}X_{\lambda} + {}^{(2)}X_{\mu}{}^{(2)}X_{\lambda} - {}^{(2)}X_{\lambda}X_{\mu}k_{\alpha}{}^{\alpha}$$

= $(n-1)X_{\mu}X_{\lambda} + U_{\mu}U_{\lambda}.$

Our assertion follows immediately from (2.13), (2.14) and (2.15).

THEOREM 2.3. The second contracted ES curvature tensor $V_{\omega\mu}$ in $g - ESX_n$ is a curl of the vector S_{λ} . That is,

(2.16)
$$V_{\omega\mu} = 2\partial_{[\omega}S_{\mu]}.$$

Proof. Putting $\lambda = \nu = \alpha$ in (2.1), we have

(2.17)
$$V_{\omega\mu} = L_{\omega\mu\alpha}{}^{\alpha} + M_{\omega\mu\alpha}{}^{\alpha} + N_{\omega\mu\alpha}{}^{\alpha}.$$

In virtue of (1.11), (1.24), (1.25) and (1.30), the relations (2.2), (2.3) and (2.4) give

$$L_{\omega\mu\alpha}{}^{\alpha} = N_{\omega\mu\alpha}{}^{\alpha} = 0$$

 $M_{\omega\mu\alpha}{}^{\alpha} = 2(1-n)\partial_{[\omega}X_{\mu]} + 2\nabla_{[\mu}U_{\omega]} = 2(1-n)\partial_{[\omega}X_{\mu]} = 2\partial_{[\omega}S_{\mu]}$ which together with (2.17) proves our assertion.

THEOREM 2.4. The tensor $R_{\mu\lambda}$ is symmetric when n = 3.

Proof. The relation (2.10) may be written as

(2.18)
$$R_{\mu\lambda} = L_{\mu\lambda} + (3-n)\nabla_{\mu}X_{\lambda} - 2\nabla_{(\mu}X_{\lambda)} + \nabla_{\mu}U_{\lambda} -\nabla_{\alpha}U^{\alpha}{}_{\mu\lambda} + (n-1)X_{\mu}X_{\lambda} + U_{\mu}U_{\lambda}.$$

where use has been made of (1.24), (1.29) and (2.12). Hence, in virtue of (1.29) and (1.30) we have $R_{[\mu\lambda]} = 0$ if and only if $(3-n)\nabla_{[\mu}X_{\lambda]} =$ $(3-n)\partial_{[\mu}X_{\lambda]} = 0$

REMARK 2.5. In the proof of the Theorem (2.4), we excluded the case that $\partial_{\mu}X_{\lambda} = 0$, because we assumed that X_{λ} is not a gradient vector in the definition of semi-symmetric connection in (1.22). In fact, the assumption that X_{λ} is not a gradient vector is essential in the discussions of the field equations in $g - ESX_n$.

THEOREM 2.6. The contracted ES curvature tensors in $g - ESX_n$ are related by

(2.19)
$$2R_{[\mu\lambda]} = 4\partial_{[\mu}X_{\lambda]} + V_{\mu\lambda}.$$

 \square

 \square

Proof. In virtue of (1.24), (1.29) and (1.30), the relation (2.19) may be proved from (2.18) as in the following way:

(2.20)
$$2R_{[\mu\lambda]} = 2(3-n)\partial_{[\mu}X_{\lambda]}$$
$$= 2(1-n)\partial_{[\mu}X_{\lambda]} + 4\partial_{[\mu}X_{\lambda]}$$
$$= 2\partial_{[\mu}S_{\lambda]} + 4\partial_{[\mu}X_{\lambda]}$$
$$= V_{\mu\lambda} + 4\partial_{[\mu}X_{\lambda]}.$$

3. The field equations in $g - ESX_n$

By field equations we mean a set of partial equations for $g_{\lambda\mu}$. In the present section we are concerned with the geometry of field equations in $g - ESX_n$ and not with their physical applications. We saw in the previous section that ES curvature tensor $R_{\omega\mu\lambda}{}^{\nu}$ together with its contracted curvature tensor $R_{\mu\lambda}$ appear as a function of $g_{\lambda\mu}$. In order to obtain the tensor $g_{\lambda\mu}$ with which we started in dealing with (1.9), (1.10) and (1.11), we suggest the following conditions for it in terms of $R_{\mu\lambda}$

(3.1)
$$R_{[\mu\lambda]} = \partial_{[\mu} X_{\lambda]}$$

$$(3.2) R_{(\mu\lambda)} = 0$$

where X_{λ} is an arbitrary vector. The conditions (3.1) and (3.2) represent a system of n^2 differential equations of the second order for $g_{\lambda\mu}$.

The unified field theory in the *n*-dimensional ES manifold ESX_n is governed by the following set of equations: n^3 equations (1.10) under the conditions (1.22), which determine the unique ES connection $\Gamma_{\lambda\mu}{}^{\nu}$, and n^2 field equations (3.1) and (3.2) for n^2 unknowns $g_{\lambda\mu}$. In Theorem (3.3), it states that the unknowns Y_{λ} are uniquely determined in ESX_n . The conditions (3.1) and (3.2) are of a purely geometrical nature and physical interpretation is not involved in them a *priori*. Einstein suggested several different sets of field equations in his *four-dimensional unified field theory*. It would seem natural to follow the analogy of Einstein's field equations (1.11) in our manifold ESX_n , too. However, the restriction $S_{\lambda} = 0$ is too strong in our unified field theory in the ES manifold ESX_n ,

since this condition implies $X_{\lambda} = 0$ and hence $\Gamma_{\lambda\mu}{}^{\nu} = \begin{cases} \nu \\ \lambda\mu \end{cases}$ in virtue of (1.23) and (1.24). Therefore, we shall not adopt (1.11) as a starting point, exclude the condition $S_{\lambda} = 0$, and impose the field equations in ESX_n as given in (3.1) and (3.2).

REMARK 3.1. In our further considerations we restrict ourselves to the conditions

(3.3)
$$X_{\lambda} \neq 0$$
 and X_{λ} not a gradient vector

This restriction is quite natural in view of (3.1) and (3.2) and Remark (3.1). The first consequence of (3.3) is the following theorem.

THEOREM 3.2. In $g - ESX_n$ we have

$$(3.4) U^{\nu}{}_{\lambda\mu} \neq 0$$

Proof. Assume that $U^{\nu}{}_{\lambda\mu} \neq 0$. Then (1.22) implies that

(3.5)
$$k_{\lambda\nu}X_{\mu} + k_{\mu\nu}X_{\lambda} = 0 \text{ for every } \lambda, \ \mu, \ \nu.$$

In virtue of the condition (3.3), there exists at least one fixed index δ such that $X_{\delta} \neq 0$. Hence

(3.6)
$$k_{\lambda\nu}X_{\delta} + k_{\delta\nu}X_{\lambda} = 0 \text{ for every } \lambda, \nu.$$

Putting $\lambda = \delta$ in (3.6), we have $k_{\delta\nu} = 0$ for every ν . If $\lambda \neq \delta$, then $k_{\lambda\nu} = 0$ for every ν , since $k_{\delta\nu} = 0$. Hence we have

(3.7)
$$k_{\lambda\nu} = 0 \text{ for every } \lambda, \nu$$

which is a contradiction to the non-symmetry of $g_{\lambda\mu}$.

THEOREM 3.3. In $g - ESX_n$, the field equation (3.1) is satisfied by a unique vector Y_{λ} given by

(3.8)
$$Y_{\lambda} = (3-n)X_{\lambda}$$

when $n \neq 3$

Proof. In virtue of (2.18), we have

$$R_{[\mu\lambda]} = (3-n)\partial_{[\mu}X_{\lambda]}$$

from which (3.8) follows.

THEOREM 3.4. In $g - ESX_n$, the field equation (3.2) is equivalent to (3.9) $L_{\mu\lambda} + \nabla_{(\mu}T_{\lambda)} - \nabla_{\alpha}U^{\alpha}{}_{\mu\lambda} + (n-1)X_{\mu}X_{\lambda} + U_{\mu}U_{\lambda} = 0$

Proof. (3.9) is a immediate consequence of (2.10) and (3.2).

References

- [1] Hwang, I.H., A study on the recurrence relations and vectors X_{λ}, S_{λ} and U_{λ} in $g ESX_n$, Korean J. Math. 18 2010, No.2, 133-139
- [2] Hwang, I.H., On the ES curvature tensor in in $g ESX_n$, Korean J. Math. 19 2011, No.1, 25-32
- [3] Hwang, I.H., A study on the geometry of 2-dimensional RE-manifold X₂, J. Korean Math. Soc., **32** 1995, No.2, 301-309
- [4] Hwang, I.H., Three- and Five- dimensional considerations of the geometry of Einstein's g-unified field theory, Int.J. Theor. Phys., 27 1988, No.9, 1105-1136
- [5] Chung, K.T., Einstein's connection in terms of *g^{λν}, Nuovo cimento Soc. Ital. Fis. B, 27 1963, (X), 1297-1324
- [6] Datta, D.k., Some theorems on symmetric recurrent tensors of the second order, Tensor (N.S.) 15 1964, 1105-1136
- [7] Einstein, A., The meaning of relativity, Princeton University Press, 1950
- [8] Hlavatý, V., Geometry of Einstein's unified field theory, Noordhoop Ltd., 1957
- [9] Mishra, R.S., n-dimensional considerations of unified field theory of relativity, Tensor 9 1959, 217-225

Department of Mathematics University of Incheon Incheon 406-772, Korea *E-mail*: ho818@incheon.ac.kr