DOI QR코드

DOI QR Code

Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake

회전익기 공기흡입구 주위 방빙장치 성능 해석

  • Ahn, Gook-Bin (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Jung, Ki-Young (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Jung, Sung-Ki (Korea Aerospace Industries, Ltd.) ;
  • Shin, Hun-Bum (Korea Aerospace Industries, Ltd.) ;
  • Myong, Rho-Shin (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University)
  • Received : 2012.10.09
  • Accepted : 2013.03.27
  • Published : 2013.04.01

Abstract

Ice accretions on the surface around a rotorcraft air intake can deteriorate the safety of rotorcraft due to the engine performance degradation. The computational simulation based on modern CFD methods can be considered extremely valuable in analyzing icing effects before exact but very expensive icing wind tunnel or in-flight tests are conducted. In this study the range and amount of ice on the surface of anti-icing equipment are investigated for heat-on and heat-off modes. It is demonstrated through the computational prediction and the icing wind tunnel test that the maximum mass and height of ice of heat-on mode are reduced about 80% in comparison with those of heat-off mode.

회전익기의 공기흡입구 주위 표면에 발생한 결빙은 엔진의 성능을 저해하는 요인으로 비행 안전성에 심각한 영향을 끼칠 수 있다. 항공기 표면에 발생하는 결빙현상을 분석하는데 많은 비용이 소요되는 결빙 풍동 시험 및 비행시험에 비해 전산유체역학을 기반으로 한 결빙 시뮬레이션은 매우 효과적인 도구가 될 수 있다. 본 연구에서는 결빙조건에서 회전익기 공기흡입구 부근에 설치된 방빙장치의 작동 유무에 따른 결빙의 양과 발생 영역을 CFD 예측기법 및 결빙 풍동시험을 통해 분석하였다. 방빙장치를 작동시킨 경우 공기 흡입구 표면에서의 결빙의 질량과 최대 두께가 약 80% 이상 감소하는 것을 확인하였다.

Keywords

References

  1. Bragg, M. B., Broeren, A. P. and Blumenthal, L. A., "Iced-airfoil Aerodynamics," Progress in Aerospace Sciences, Vol. 41, 2005, pp. 323-362 https://doi.org/10.1016/j.paerosci.2005.07.001
  2. Jin, W., "A Computational Study of Icing Effects on the Performance of an S-Duct Inlet," Ph.D. Thesis, Department of Aerospace Engineering, University of Kansas, USA, 2009.
  3. Gent, R. W., Dart, N. P. and Cansdale, J. T., "Aircraft Icing," Philosophical Transactions of the Royal Society of London, Vol. 358, 2000, pp. 2873-2911. https://doi.org/10.1098/rsta.2000.0689
  4. Jung, S. K., Shin, S. M., Myong, R. S., Cho, T. H., Jeong, H. H. and Jung, J. H., "Ice Accretion Effect on the Aerodynamic Characteristics of KC-100 Aircraft," 48th AIAA Aerospace Sciences Meeting, 2010.
  5. Kind, R. J., Potapczuk, M. G., Feo, A., Golia. C. and Shah, A. D., "Experimental and Computational Simulation of In-flight Icing Phenomena," Progress in Aerospace Science, Vol. 34, 1998, pp. 257-345. https://doi.org/10.1016/S0376-0421(98)80001-8
  6. Jung, S. K., Lee, C. H., Shin, S. M., Myong, R. S. and Cho, T. H., "An Investigation of Icing Effects on the Aerodynamic Characteristics of KC-100 Aircraft," (in Korean) Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 6, 2010, pp. 530-536. https://doi.org/10.5139/JKSAS.2010.38.6.530
  7. Jung, S. K., Myong, R. S. and Cho, T. H., "An Eulerian-Based Droplet Impingement and Ice Accretion Code for Aircraft Icing Prediction," (in Korean) Journal of Computational Fluids Engineering (Korean Society of Computational Fluids Engineering), Vol. 15, No. 2, 2010, pp. 71-18.
  8. AOPA Air Safety Foundation, Aircraft Icing, AOPA Epilot, 2008.
  9. Al-khalil, K. M., Keith T. G., Dewitt K. J., Nathman J. K. and Dietrich, D. A., "Thermal Analysis of Engine Inlet Anti-icing Systems," Journal of Propulsion and Power, Vol. 6, 1990, pp. 628-623. https://doi.org/10.2514/3.23264
  10. Federal Aviation Regulation Parts 29, Airworthness Standards: Transportation Category Rotorcraft, Appendix C, FAA, 1914, Washington, DC, USA.
  11. Cao, Y. and Chen, K., "Helicopter Icing," The Aeronautical Journal, Vol. 114, No. 1152, 2010, pp. 83-90. https://doi.org/10.1017/S0001924000003559
  12. Tezok, F. and Ernest, F., "Icing Tunnel Testing Methodology: Pre-Test CFD, Tunnel Peculiarities, Scaling Effects," Proceedings of The Aerodynamics Symposium, Vol. 6, 1997, pp. 81-100.
  13. Jung, S. K., Lee. C. H., Nagdewe, S., Myong, R. S. and Cho, T. H., "A Study on Truncated Flapped Airfoil for Efficient Icing Wind Tunnel Test," (in Korean) Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 6, 2011, pp. 481-486. https://doi.org/10.5139/JKSAS.2011.39.6.481
  14. An, Y. G. and Myong, R. S., "Scaling Methods for Icing Wind Tunnel Test," (in Korean) Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 2, 2012, pp. 1-8. https://doi.org/10.5139/JKSAS.2012.40.2.146
  15. Yee, K. J. and Back, S. W., "Effect of Aircraft Icing and Ice Protection System," KSAS Magazine, Vol. 3, No. 1, 2009, pp. 58-65.
  16. FLUENT 6.1 User's Guide, FLUENT Inc., 2003.
  17. Shin, H. B., Choi, W., Seo, S. J. and Ryu, J. B., "Study of Icing Accretion on The 2D Airfoil," (in Korean) Korean Society of Computational Fluid Engineering Spring Conference, 2009, pp. 21-26.
  18. NTI Solutions User Manual, Newmerical Technologies Inc., 2010.

Cited by

  1. DEVELOPMENT OF 2ND GENERATION ICE ACCRETION ANALYSIS PROGRAM FOR HANDLING GENERAL 3-D GEOMETRIES vol.20, pp.2, 2015, https://doi.org/10.6112/kscfe.2015.20.2.023