DOI QR코드

DOI QR Code

Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge

항공기 날개 앞전의 레이더흡수구조 최적화

  • Received : 2012.10.12
  • Accepted : 2013.03.12
  • Published : 2013.04.01

Abstract

In this paper, objective functions are defined for optimization of radar absorbing structures (RAS) on the aircraft wing leading edge. RAS is regarded as a single layer structure made of dielectrics. Design variables are the real and imaginary parts of complex permittivity. Reflection coefficient(RC) and radar cross section(RCS) are used in the objective function respectively. Transmission line theory is employed to calculate the RC. The RCS is evaluated by using physical optics(PO) for a leading edge part model. Genetic algorithm(GA) is used to perform optimization procedures. The radar absorbing performance of designed RAS is assessed by the RCS of a wing which has RAS on the leading edge.

항공기 날개 앞전의 레이더흡수구조 최적화를 위한 목적함수를 정의하였으며, 유전체로 구성된 단층형 레이더흡수구조를 설계하였다. 설계변수는 흡수체의 복소유전율이며 반사계수와 레이더반사면적을 각각 목적함수로 사용하였다. 반사계수는 계산이 간단하여 최적화에 효과적으로 사용될 수 있지만 대상물을 평판형태로 가정하기 때문에 구조물의 형상을 충분히 반영하기 어렵다. 반면 레이더반사면적은 형상을 충분히 반영할 수 있지만 계산에 많은 시간이 요구된다. 반사계수는 전송선로이론을 통하여 계산하였으며, 레이더반사면적은 형상조건을 반영하기 위하여 날개 앞전 부분모델에 대해 물리광학법을 사용하여 평가하였다. 최적설계는 유전자알고리즘을 사용하였고, 설계된 레이더흡수구조를 날개 앞전에 적용하여 레이더반사면적을 계산함으로써 레이더흡수 성능을 확인하였다.

Keywords

References

  1. Grant, R., The Radar Game - Understanding Stealth and Aircraft Survivability, Mitchell Institute Press, 1998.
  2. Hong, C. S., "Stealth aircraft and composites," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 24, No. 3, 2005, pp.156-160.
  3. Kim, J. B., Lee, S. K., and Kim, C. G., "Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band," Composites Science and Technology, Vol. 68, 2008, pp.2909-2916. https://doi.org/10.1016/j.compscitech.2007.10.035
  4. Chin, W. S., Lee, D. G., "Development of the composite RAS(radar absorbing structure) for the X-band frequency range," Composite Structures, Vol. 77, 2007, pp.457-465. https://doi.org/10.1016/j.compstruct.2005.07.021
  5. Naito, Y., Suetake, K., "Application of ferrite to electromagnetic wave absorber and its characteristics," IEEE Trans on Microwave Theory and Technique, Vol. 19, 1971, pp.65-72. https://doi.org/10.1109/TMTT.1971.1127446
  6. Musal, H. M., Hahn, H. T., "Thin-layer electromagnetic absorber design," IEEE Trans on Magnetics, Vol. 25, 1989, pp.3851-3853. https://doi.org/10.1109/20.42454
  7. Weile, D. S., Michielssen, E., and Goldberg, D. E., "Genetic algorithm design of preto optimum broadband microwave absorbers ," IEEE Trans on Electromagnetic Compatibility, Vol. 38, 1996, pp.518-525. https://doi.org/10.1109/15.536085
  8. Cheng, D. K., Fundamentals of Engineering Electromagnetics, Prentice Hall, 1992.
  9. Collin, R. E., Foundations for Microwave Engineeing, McGrac-Hill, 1992.
  10. Kim, D. I., Electromagnetic Wave Absorber, Deayungsa, 2006.
  11. Bennett, C. A., Principles of Physical Optics, Wiley, 2008.
  12. Youssef, N. N., "Radar cross section of complex targets," Proceedings of the IEEE, Vol. 77, 1989, pp.722-734. https://doi.org/10.1109/5.32062
  13. Myong, R. S., Cho, T. H., "Development of a computational electromagnetics code for radar cross section calculations of flying vehicles," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 33, No. 4, 2005, pp.1-6. https://doi.org/10.5139/JKSAS.2005.33.4.001
  14. Jenn, D. C., Radar and Laser Cross Section Engineering, AIAA Education Series, 2005.
  15. Knott, E. F., Shaeffer, J. F., and Tuley, M. T., Radar Cross Section, Artech House, 1993.
  16. Kim, J. B., "Design of microwave absorbing composite laminates by using semi-empirical permittivity models," Ph.D. Thesis, KAIST, 2007.

Cited by

  1. Design of Single Layer Radar Absorbing Structures(RAS) for Minimizing Radar Cross Section(RCS) Using Impedance Matching vol.43, pp.2, 2015, https://doi.org/10.5139/JKSAS.2015.43.2.118