DOI QR코드

DOI QR Code

Gaussian Filtering Effects on Brain Tissue-masked Susceptibility Weighted Images to Optimize Voxel-based Analysis

화소 분석의 최적화를 위해 자화감수성 영상에 나타난 뇌조직의 가우시안 필터 효과 연구

  • Hwang, Eo-Jin (Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University) ;
  • Kim, Min-Ji (Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University) ;
  • Jahng, Geon-Ho (Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University)
  • 황어진 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ;
  • 김민지 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ;
  • 장건호 (경희대학교 의과대학 강동경희대학교병원 영상의학과)
  • Received : 2013.11.12
  • Accepted : 2013.12.12
  • Published : 2013.12.27

Abstract

Purpose : The objective of this study was to investigate effects of different smoothing kernel sizes on brain tissue-masked susceptibility-weighted images (SWI) obtained from normal elderly subjects using voxel-based analyses. Materials and Methods: Twenty healthy human volunteers (mean $age{\pm}SD$ = $67.8{\pm}6.09$ years, 14 females and 6 males) were studied after informed consent. A fully first-order flow-compensated three-dimensional (3D) gradient-echo sequence ran to obtain axial magnitude and phase images to generate SWI data. In addition, sagittal 3D T1-weighted images were acquired with the magnetization-prepared rapid acquisition of gradient-echo sequence for brain tissue segmentation and imaging registration. Both paramagnetically (PSWI) and diamagnetically (NSWI) phase-masked SWI data were obtained with masking out non-brain tissues. Finally, both tissue-masked PSWI and NSWI data were smoothed using different smoothing kernel sizes that were isotropic 0, 2, 4, and 8 mm Gaussian kernels. The voxel-based comparisons were performed using a paired t-test between PSWI and NSWI for each smoothing kernel size. Results: The significance of comparisons increased with increasing smoothing kernel sizes. Signals from NSWI were greater than those from PSWI. The smoothing kernel size of four was optimal to use voxel-based comparisons. The bilaterally different areas were found on multiple brain regions. Conclusion: The paramagnetic (positive) phase mask led to reduce signals from high susceptibility areas. To minimize partial volume effects and contributions of large vessels, the voxel-based analysis on SWI with masked non-brain components should be utilized.

목적: 본 연구의 목적은 자화감수성 영상 (SWI)에 나타난 정상 노인의 뇌조직을 픽셀 별로 분석하기 위해 사용되는 다듬질 (smoothing)의 핵심 크기 효과를 보는 것이다. 대상과 방법: 이십 명의 정상 지원군 (평균 나이${\pm}$ 표준 편차 = $67.8{\pm}6.09$세, 여 14명, 남 6명) 이 실험에 대한 동의와 함께 본 연구에 참여하였다. 이 지원군 각각의 자화감수성 영상을 만들기 위해 일차원 혈류흐름 보상 삼차원 경사자장 에코 시퀀스를 이용해 크기과 위상 영상을 얻었고, 영상 처리와 영상 내 조직 분할에 사용되는 자화준비 급속획득 경사자장 에코 (MPRAGE) 시퀀스를 이용한 삼차원 시상면 T1 강조영상을 얻었다. 자화감수성 영상은 다시 위상영상을 이용하여 상자성 (paramagnetic) 물질의 존재 여부를 강조하는 PSWI (위상 영상에서 양수 값을 강조한 자화감수성 영상)과 반자성 (diamagnetic) 물질의 존재 여부를 강조하는 NSWI (위상 영상의 음수 값을 강조한 자화감수성 영상) 영상을 만들었다. 오직 뇌조직 부분만 나타나도록 조직이 아닌 부분을 차폐 (masking) 하는 과정을 거쳤다. 마지막으로 뇌조직 PSWI와 NSWI는 등방성의 0, 2, 4, 8 mm의 다듬질 핵심 크기를 이용하여 다듬질 되었다. 또한 각각의 다듬질 핵심 크기로 다듬질된 PSWI와 NSWI를 쌍 비교 t검정을 실행하여 각 픽셀 별로 비교하였다. 결과: 통계 분석의 중요도는 다듬질의 핵심 크기가 커질수록 증가하였고, 영상의 시그널 세기는 NSWI가 PSWI보다 컸다. 또한 영상의 픽셀 별 비교 분석에 가장 최적화 된 다듬질의 핵심 크기는 4였으며 쌍 비교 t검정 결과 뇌의 양쪽에서 차이가 난 뇌 조직의 위치와 범위는 뇌의 여러 지역에서 발견되었다. 결론: 상자성 물질을 강조한 PSWI는 자화감수성이 높은 뇌 여러 영역의 시그널 크기를 감소시켰다. 부분적인 부피효과와 큰 혈관의 기여도를 최소화 하기 위해서는 뇌 조직만 뽑아낸 자화감수성 영상의 복셀 별 분석이 사용되어야 하겠다.

Keywords

References

  1. Rauscher A, Sedlacik J, Barth M, Mentzel HJ, Reichenbach JR. Magnetic susceptibility-weighted MR phase imaging of the human brain. AJNR Am J Neuroradiol 2005;26:736-742
  2. Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1-25 https://doi.org/10.1016/j.mri.2004.10.001
  3. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009;30:19-30
  4. Hagberg GE, Welch EB, Greiser A. The sign convention for phase values on different vendor systems: definition and implications for susceptibility-weighted imaging. Magn Reson Imaging 2010;28:297-300 https://doi.org/10.1016/j.mri.2009.06.001
  5. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage 2000;11:805-821 https://doi.org/10.1006/nimg.2000.0582
  6. Eissa A, Lebel RM, Korzan JR, et al. Detecting lesions in multiple sclerosis at 4.7 tesla using phase susceptibility-weighting and t2-weighting. J Magn Reson Imaging 2009;30:737-742 https://doi.org/10.1002/jmri.21926
  7. Grabner G, Dal-Bianco A, Schernthaner M, Vass K, Lassmann H, Trattnig S. Analysis of multiple sclerosis lesions using afusion of 3.0 t flair and 7.0 t swi phase: flair swi. J Magn Reson Imaging 2011;33:543-549 https://doi.org/10.1002/jmri.22452
  8. Kim MJ, Jahng GH, Lee HY, et al. Development of a Korean standard structural brain template in cognitive normals and patients with mild cognitive impairment and Alzheimer's disease. J. Korean Soc. Magn. Reson. Med. 2010;14:103-114 https://doi.org/10.13104/jksmrm.2010.14.2.103
  9. Fukunaga M, Li TQ, van Gelderen P, et al. Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 2010;107:3834-3839 https://doi.org/10.1073/pnas.0911177107
  10. Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 2007;104:11796- 11801 https://doi.org/10.1073/pnas.0610821104
  11. Thomas B, Somasundaram S, Thamburaj K, et al. Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review. Neuroradiology 2008;50:105-116 https://doi.org/10.1007/s00234-007-0316-z
  12. Niwa T, Aida N, Kawaguchi H, et al. Anatomic dependency of phase shifts in the cerebral venous system of neonates at susceptibility- weighted MRI. J Magn Reson Imaging 2011;34:1031- 1036 https://doi.org/10.1002/jmri.22782
  13. Schafer A, Wharton S, Gowland P, Bowtell R. Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI. Neuroimage 2009;48:126-137 https://doi.org/10.1016/j.neuroimage.2009.05.093
  14. Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 2009;62:1510- 1522 https://doi.org/10.1002/mrm.22135
  15. de Rochefort L, Brown R, Prince MR, Wang Y. Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn Reson Med 2008;60:1003- 1009 https://doi.org/10.1002/mrm.21710
  16. Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (cosmos): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 2009;61:196-204 https://doi.org/10.1002/mrm.21828