DOI QR코드

DOI QR Code

A System for Concurrent TMS-fMRI and Evaluation of Imaging Effects

동시 뇌경두개자기자극-기능자기공명영상 시행을 위한 홀더 제작과 시뮬레이션 및 영상 데이터 평가

  • Kim, Jae-Chang (Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Kyeong, Sunghyon (Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Lee, Jong Doo (Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Park, Hae-Jeong (Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine)
  • 김재창 (연세대학교 의과대학 BK21 연세의과학사업단) ;
  • 경성현 (연세대학교 의과대학 BK21 연세의과학사업단) ;
  • 이종두 (연세대학교 의과대학 BK21 연세의과학사업단) ;
  • 박해정 (연세대학교 의과대학 BK21 연세의과학사업단)
  • Received : 2013.06.13
  • Accepted : 2013.06.20
  • Published : 2013.09.30

Abstract

Purpose : The purpose of this study was to setup a concuurent transcranial magnetic stimulation (TMS)-functional MRI (fMRI) system for understanding causality of the functional brain network. Materials and Methods: We manufactured a TMS coil holder using nonmagnetic polyether ether ketone (PEEK). We simulated magnetic field distributions in the MR scanner according to TMS coil positions and angles. To minimize image distortions caused by TMS application, we controlled fMRI acquisition and TMS sequences to trigger TMS during inter-volume intervals. Results: Simulation showed that the magnetic field below the center of the coil was dramatically decreased with distance. Through the MR phantom study, we confirmed that TMS application around inter-volume acquisition time = 100 miliseconds reduced imaging distortion. Finally, the applicability of the concurrent TMS-fMRI was tested in preliminary studies with a healthy subject conducting a motor task within TMS-fMRI and passive motor movement induced by TMS in fMRI. Conclusion: In this study, we confirmed that the developed system allows use of TMS inside an fMRI system, which would contribute to the research of brain activation changes and causality in brain connectivity.

목적 : 본 연구는 신경망의 인과성을 이해하기 위해 사용되는 방법인 뇌경두개자기자극기 (TMS)를 기능자기공명영상(fMRI) 내에서 동시에 시행하기 위한 적합성을 평가하는데 그 목적이 있다. 대상 및 방법 : TMS 코일을 지지할 수 있도록 비자성의 특징을 갖는 물질인 Polyetherether Keton (PEEK)을 이용하여 홀더를 제작하였다. 컴퓨터 시뮬레이션을 이용하여 MR 스캐너 안에서의 TMS 코일의 위치와 방향에 따른 자기장의 분포를 계산하였다. 또한, TMS 자극시 발생할 수 있는 영상 왜곡을 최소화하면서 fMRI영상을 획득하기 위하여 볼륨과 볼륨 획득 사이 간극 동안 TMS 자극을 가하는 기법을 제안하였다. 결과 : 컴퓨터 시뮬레이션을 통해서 코일 중심의 자기장은 코일에서 거리가 멀어질수록 급격하게 감소함을 확인하였다. 팬텀실험을 통해 fMRI 자극제시는 볼륨간 시간 간격을 100 ms정도 수준에서도 영상 왜곡을 줄이는데 문제가 없음을 확인하였다. 운동 과제 수행과 TMS로 운동 중추 자극시 각각의 뇌반응 분석 연구를 통해 fMRI 측정 중 TMS가 가능함을 확인하였다. 결론 : 본 연구를 통해 fMRI 환경 내에서 관심 영역에 TMS를 가함으로써 뇌 기능의 인과적 연결성 연구를 할 수 있는 기본 도구를 확립하게 되었다.

Keywords

References

  1. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985;1(8437):1106-1107
  2. Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng 2007;9:527-565 https://doi.org/10.1146/annurev.bioeng.9.061206.133100
  3. Wassermann E, McShane L, Hallett M. ScienceDirect - Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section : Noninvasive mapping of muscle representations in human motor cortex. Electroencephalography …. 1992
  4. Nardone R, De Blasi P, Bergmann J, et al. Theta burst stimulation of dorsolateral prefrontal cortex modulates pathological language switching: A case report. Neurosci Lett 2011;487:378-382 https://doi.org/10.1016/j.neulet.2010.10.060
  5. Funke K, Benali A. Modulation of cortical inhibition by rTMS - findings obtained from animal models. J Physiol (Lond) 2011;589:4423-4435 https://doi.org/10.1113/jphysiol.2011.206573
  6. Di Lazzaro V, Dileone M, Pilato F, et al. Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol 2011;105:2150-2156 https://doi.org/10.1152/jn.00781.2010
  7. Speer AM, Kimbrell TA, Wassermann EM, et al. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 2000;48:1133-1141 https://doi.org/10.1016/S0006-3223(00)01065-9
  8. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005;45:201-206 https://doi.org/10.1016/j.neuron.2004.12.033
  9. Stagg C, Wylezinska M. Neurochemical Effects of Theta Burst Stimulation as Assessed by Magnetic Resonance Spectroscopy. Journal of …. 2009
  10. Huang YZ, Rothwell JC, Chen RS, Lu CS, Chuang WL. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol 2011;122:1011-1018 https://doi.org/10.1016/j.clinph.2010.08.016
  11. Lipton RB, Pearlman SH. Transcranial magnetic simulation in the treatment of migraine. Neurotherapeutics 2010;7:204-212 https://doi.org/10.1016/j.nurt.2010.03.002
  12. Pennisi G, Alagona G, Rapisarda G, et al. Transcranial magnetic stimulation after pure motor stroke. Clin Neurophysiol 2002; 113:1536-1543 https://doi.org/10.1016/S1388-2457(02)00255-9
  13. Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A. Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 2011;22:233-251 https://doi.org/10.1016/j.nec.2011.01.002
  14. Kamarajan C, Porjesz B, Jones KA, et al. Alcoholism is a disinhibitory disorder: neurophysiological evidence from a Go/No-Go task. Biol Psychol 2005;69:353-373 https://doi.org/10.1016/j.biopsycho.2004.08.004
  15. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 2004;19:1950-1962 https://doi.org/10.1111/j.1460-9568.2004.03277.x
  16. Bohning DE, Denslow S, Bohning PA, Walker JA. ScienceDirect.com - Clinical Neurophysiology - A TMS coil positioning/holding system for MR image-guided TMS interleaved with fMRI. Clinical …. 2003 https://doi.org/10.1016/S1388-2457(03)00232-3
  17. Driver J, Blankenburg F, Bestmann S, Ruff CC. New approaches to the study of human brain networks underlying spatial attention and related processes. Exp Brain Res 2010;206:153-162 https://doi.org/10.1007/s00221-010-2205-7
  18. Sandrini M, Umilta' C, Rusconi E. The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci Biobehav Rev 2011;35:516-536 https://doi.org/10.1016/j.neubiorev.2010.06.005
  19. Ruff CC, Driver J, Bestmann S. Combining TMS and fMRI: from "virtual lesions"to functional-network accounts of cognition. Cortex 2009;45:1043-1049 https://doi.org/10.1016/j.cortex.2008.10.012
  20. Thut G, Pascual-Leone A. A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr 2010;22:219-232 https://doi.org/10.1007/s10548-009-0115-4
  21. Moisa M, Pohmann R, Ewald L, Thielscher A. New coil positioning method for interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) and its validation in a motor cortex study. J Magn Reson Imaging 2009;29:189-197 https://doi.org/10.1002/jmri.21611
  22. MATLAB(The MathWorks, Inc.) [Internet]. [cited 2013 Jun 18]. Available from: http://www.mathworks.com/
  23. E-prime(Psychology software tools, INC) [Internet]. [cited 2013 Jun 18]. Available from: http://www.pstnet.com/eprime.cfm
  24. Brainsight2(Rogue Research Inc) [Internet]. [cited 2013 Jun 18]. Available from: https://www.rogue-research.com/
  25. Statistic Parametric Mapping (SPM8) [Internet]. [cited 2013 Jun 18]. Available from: http://www.fil.ion.ucl.ac.uk/spm/
  26. Friston KJ. Functional and effective connectivity: a review. Brain Connectivity 2011;1:13-36 https://doi.org/10.1089/brain.2011.0008
  27. Smith JF, Pillai A, Chen K, Horwitz B. Effective connectivity modeling for fMRI: six issues and possible solutions using linear dynamic systems. Front Syst Neurosci 2012;5:104
  28. Heinen K, Ruff CC, Bjoertomt O, et al. Concurrent TMS-fMRI reveals dynamic interhemispheric influences of the right parietal cortex during exogenously cued visuospatial attention. Eur J Neurosci 2011;33:991-1000 https://doi.org/10.1111/j.1460-9568.2010.07580.x
  29. Peters JC, Reithler J, Schuhmann T, et al. On the feasibility of concurrent human TMS-EEG-fMRI measurements. J Neurophysiol 2013;109:1214-1227 https://doi.org/10.1152/jn.00071.2012
  30. Ilmoniemi RJ, Kicic′D. Methodology for combined TMS and EEG. Brain Topogr 2010;22:233-248 https://doi.org/10.1007/s10548-009-0123-4
  31. Bestmann S, Oliviero A, Voss M, et al. Cortical correlates of TMS-induced phantom hand movements revealed with concurrent TMS-fMRI. Neuropsychologia 2006;44:2959-2971 https://doi.org/10.1016/j.neuropsychologia.2006.06.023
  32. Li B, Daunizeau J, Stephan KE, Penny W, Hu D, Friston K. Generalised filtering and stochastic DCM for fMRI. Neuroimage 2011;58:442-457 https://doi.org/10.1016/j.neuroimage.2011.01.085
  33. Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009;120:2008-2039 https://doi.org/10.1016/j.clinph.2009.08.016
  34. Sporns O, Tononi G, Kotter R. The human connectome: a structural description of the human brain. PLoS Comput Biol 2005;1:e42 https://doi.org/10.1371/journal.pcbi.0010042
  35. Behrens TE, Sporns O. Human connectomics. Curr Opin Neurobiol.2011 Sep 9.