DOI QR코드

DOI QR Code

Bioconversion of Flavones During Fermentation in Milk Containing Scutellaria baicalensis Extract by Lactobacillus brevis

  • Xu, Chen (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Ji, Geun-Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • Received : 2013.05.02
  • Accepted : 2013.07.15
  • Published : 2013.10.28

Abstract

Scutellaria baicalensis (SB), a traditional herb with high pharmacological value, contains more than 10% flavone by weight. To improve the biological activity of flavones in SB, we aimed to enhance the bioconversion of baicalin (BG) to baicalein (B) and wogonoside (WG) to wogonin (W) in SB during fermentation using beta-glucuronidase produced from Lactobacillus brevis RO1. After activation, L. brevis RO1 was cultured in milk containing SB root extract with various carbon or nitrogen sources at $37^{\circ}C$ for 72 h. During fermentation, the growth patterns of L. brevis RO1 and changes in the flavone content were assessed using thin-layer chromatography and high-performance liquid chromatography. After 72 h of fermentation, the concentrations of B and W in the control group increased by only 0.15 and 0.12 mM, respectively, whereas they increased by 0.57 and 0.24 mM in the fish peptone group. The production of B and W was enhanced by the addition of 0.4% fish peptone, which not only improved the growth of L. brevis RO1 (p < 0.001) but also enhanced the bioconversion of flavones. In conclusion, the bioconversion of flavones in SB may provide a potential application for the enhancement of the functional components in SB.

Keywords

References

  1. Adhikari S, Tilak JC, Devasagayam TP. 2011. Free radical reactions of a naturally occurring flavone baicalein and possible mechanisms towards its membrane protective properties. Indian J. Biochem. Biophys. 48: 275-282.
  2. Akao T, Kawabata K, Yanagisawa E, Ishihara K, Mizuhara Y, Wakui Y, et al. 2000. Balicalin, the predominant flavone glucuronide of Scutellariae Radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J. Pharm. Pharmacol. 52: 1563-1568. https://doi.org/10.1211/0022357001777621
  3. Aspmo SI, Horn SJ, Eijsink VG. 2005. Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bateria. FEMS Microbiol. Lett. 248: 65-68. https://doi.org/10.1016/j.femsle.2005.05.021
  4. Beaud D, Tailliez P, Anba-Mondoloni J. 2005. Genetic characterization of the beta-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 151: 2323-2330. https://doi.org/10.1099/mic.0.27712-0
  5. Beaulieu L, Desbiens M, Thibodeau J, Thibault S. 2009. Pelagic fish hydrolysates as peptones for bacterial culture media. Can. J. Microbiol. 55: 1240-1249. https://doi.org/10.1139/W09-084
  6. Chiu YW, Lin TH, Huang WS, Teng CY, Liou YS, Kuo WH, et al. 2011. Baicalein inhibits the migration and invasive properties of human hepatoma cells. Toxicol. Appl. Pharmacol. 255: 316-326. https://doi.org/10.1016/j.taap.2011.07.008
  7. Dong LL, Fu YJ, Zu YG, Luo M, Wang W, Li XJ, et al. 2012. Application of cavitation system to accelerate the endogenous enzymatic hydrolysis of baicalin and wogonoside in Radix Scutellariae. Food Chem. 131: 1422-1429. https://doi.org/10.1016/j.foodchem.2011.10.013
  8. Dufosse L, De LB, Guerard F. 2001. Evaluation of nitrogenous substrates such as peptones from fish: a new method based on Gompertz modeling of microbial growth. Curr. Microbiol. 42: 32-38. https://doi.org/10.1007/s002840010174
  9. Faber K. 2004. Biotransformations in Organic Chemistry: A Textbook, pp. 25-26. 5th Ed. Springer, Germany.
  10. Gorke B, Stulke J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6: 613-624. https://doi.org/10.1038/nrmicro1932
  11. Guo XY, Yang L, Chen Y, Wang QF, Sun QS, Che YX, et al. 2011. Identification of the metabolites of baicalein in human plasma. J. Asian Nat. Prod. Res. 13: 861-868. https://doi.org/10.1080/10286020.2011.599321
  12. Honda H, Yajima N, Saito T. 2012. Characterization of lactose utilization and ${\beta}$-galactosidase in Lactobacillus brevis KB290, the hetero-fermentative lactic acid bacterium. Curr. Microbiol. 65: 679-685. https://doi.org/10.1007/s00284-012-0216-2
  13. Horn SJ, Aspmo SI, Eijsink VG. 2005. Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. J. Appl. Microbiol. 99: 1082-1089. https://doi.org/10.1111/j.1365-2672.2005.02702.x
  14. Kim DS, Son EJ, Kim M, Heo YM, Nam JB, Ro JY, et al. 2010. Antiallergic herbal composition from Scutellaria baicalensis and Phyllostachys edulis. Planta Med. 76: 678-682. https://doi.org/10.1055/s-0029-1240649
  15. Kim HS, Kim JY, Park MS, Zheng H, Ji GE. 2009. Cloning and expression of beta-glucuronidase from Lactobacillus brevis in E. coli and application in the bioconversion of baicalin and wogonoside. J. Microbiol. Biotechnol. 19: 1650-1655. https://doi.org/10.4014/jmb.0904.04053
  16. Kim JH, Shoemaker SP, Mills DA. 2009. Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155: 1351-1359. https://doi.org/10.1099/mic.0.024653-0
  17. Kim YS, Kim JJ, Cho KH, Jung WS, Moon SK, Park EK, et al. 2008. Biotransformation of ginsenoside Rbl, crocin, amygdalin, geniposide, puerarin, ginsenoside Re, hesperidin, poncirin, glycyrrhizin, and baicalin by human fecal microflora and its relation to cytotoxicity against tumor cells. J. Microbiol. Biotechnol. 18: 1109-1114.
  18. Ku SM, Zheng H, Park MS, Ji GE. 2011. Optimization of beta-glucuronidase activity from Lactobacillus delbrueckii Rh2 and its use for biotransformation of baicalin and wogonoside. J. Korean Soc. Appl. Biol. Chem. 54: 275-280.
  19. Lamer-Zarawska E, Wisniewska A, Blach-Olszewska Z. 2010. Anticancer properties of Scutellaria baicalensis root in aspect of innate immunity regulation. Adv. Clin. Exp. Med. 19: 419-428.
  20. Li-Weber M. 2009. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat. Rev. 35: 57-68. https://doi.org/10.1016/j.ctrv.2008.09.005
  21. Nandan A, Gaurav A, Pandey A, Nampoothiri KM. 2010. Arginine specific aminopeptidase from Lactobacillus brevis. Braz. Arch. Biol. Technol. 53: 1443-1450. https://doi.org/10.1590/S1516-89132010000600021
  22. Nijveldt RJ, Nood EV, Hoorn DE V, Boelens PG, Norren KV, Leeuwen PA V. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74: 418-425. https://doi.org/10.1093/ajcn/74.4.418
  23. Ohtsuki T, Himeji M, Fukazawa H, Tanaka M, Yamamoto H, Mimura A. 2009. High-yield production of Scutellaria Radix flavonoids (baicalein, baicalin and wogonin) by liquidculture of Scutellaria baicalensis root-derived cells. Braz. Arch. Biol. Technol. 52: 291-298. https://doi.org/10.1590/S1516-89132009000200005
  24. Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, et al. 2012. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med. 12: 173. https://doi.org/10.1186/1472-6882-12-173
  25. Safari R, Motamedzadegan A, Ovissipour M, Regenstein JM, Gildberg A, Rasco B. 2012. Use of hydrolysates from Yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food Bioprocess Technol. 5: 73-79. https://doi.org/10.1007/s11947-009-0225-8
  26. Stutte GW, Eraso I, Rimando AM. 2008. Carbon dioxide enrichment enhances growth and flavonoid content of two Scutellaria species. J. Am. Soc. Hort. Sci. 133: 631-638.
  27. Trinh HT, Jang SY, Han MJ, Kawk HY, Baek NI, Kim DH. 2009. Metabolism of wogonoside by human fecal microflora and its anti-pruritic effect. Biomol. Ther. 17: 211-216. https://doi.org/10.4062/biomolther.2009.17.2.211
  28. Zhang L, Lin G, Chang Q, Zuo Z. 2005. Role of intestinal first-pass metabolism of baicalein in its absorption process. Pharm. Res. 22: 1050-1058. https://doi.org/10.1007/s11095-005-5303-7

Cited by

  1. Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG vol.26, pp.7, 2016, https://doi.org/10.4014/jmb.1601.01002
  2. Acute toxicity and genotoxicity of fermented traditional medicine oyaksungi-san vol.6, pp.2, 2013, https://doi.org/10.1016/j.imr.2017.03.006
  3. Anticancer effect of fermented Insampaedok-san in human colon cancer cells: a pilot study vol.45, pp.3, 2013, https://doi.org/10.1007/s11033-018-4171-2
  4. Probiotic fermentation augments the skin anti-photoaging properties of Agastache rugosa through up-regulating antioxidant components in UV-B-irradiated HaCaT keratinocytes vol.18, pp.None, 2018, https://doi.org/10.1186/s12906-018-2194-9
  5. Baicalin, Baicalein, andLactobacillus RhamnosusJB3 AlleviatedHelicobacter pyloriInfectionsin Vitroandin Vivo vol.83, pp.12, 2013, https://doi.org/10.1111/1750-3841.14372
  6. 경두개 전침과 발효황금 병행 투여가 흰쥐의 허혈성 뇌세포 손상에 미치는 효과 vol.35, pp.4, 2013, https://doi.org/10.14406/acu.2018.034
  7. Induction of Apoptosis Scutellaria baicalensis Georgi Root Extract by Inactivation of the Phosphatidyl Inositol 3-kinase/Akt Signaling Pathway in Human Leukemia U937 Cells vol.24, pp.1, 2013, https://doi.org/10.15430/jcp.2019.24.1.11
  8. 흰쥐 해마 CA1 영역에서 H2O2에 의한 장기강화 억제에 대한 발효황금 추출물의 효과 vol.33, pp.6, 2013, https://doi.org/10.15188/kjopp.2019.12.33.6.356
  9. Enriched-Baicalein Attenuates Allergy in Cells and Mice vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/4780210
  10. Fermentation of Danggui Buxue Tang, an ancient Chinese herbal mixture, together with Lactobacillus plantarum enhances the anti-diabetic functions of herbal product vol.15, pp.None, 2013, https://doi.org/10.1186/s13020-020-00379-x
  11. Effects of dietary supplementation of enzymatic bio-conversion of Scutellaria baicalensis extract as an alternative to antibiotics on the growth performance, nutrient digestibility, fecal microbiota, vol.244, pp.None, 2013, https://doi.org/10.1016/j.livsci.2020.104307
  12. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods vol.49, pp.None, 2013, https://doi.org/10.1016/j.biotechadv.2021.107763