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Introduction

Conjugated linoleic acids (CLA) are a group of geometric

and positional isomers of linoleic acid (C18:2) and

characteristically contain conjugated double bonds [27, 28].

CLA is synthesized via biohydrogenation and isomerization

of linoleic acid by rumen bacteria [21] and delta-9

dehydrogenation of trans-11 vaccenic acid in mammalian

tissues [9, 26]. The predominant CLA isomer in nature is

cis-9,trans-11 CLA (c9,t11 CLA, >80%), and is chiefly found

in meat and dairy products, whereas trans-10,cis-12 CLA

(t10,c12 CLA) is only present in minor amounts in food. 

Numerous studies have demonstrated that the biochemical

and physiological properties of CLA include reduction of

body fat and modulation of lipid metabolism [2, 3, 6, 13],

modulation of immune function [20, 32], antioxidative

activity [33], and growth promotion [34]. It is well established

that CLA has the ability to reduce adipogenesis in adipose

tissues both in vitro and in vivo. Indeed, CLA prevented

lipid accumulation through reduction of peroxisome

proliferator-activated receptor gamma (PPARγ) in rodent

[5] and bovine preadipocytes [31]. Dietary supplementation

with 0.5% CLA for 5 weeks resulted in decreased adipose

tissue cellularity in Sprague-Drawley rats [1]. Similarly,

t10,c12 CLA supplementation was associated with decreased

expression of C/EBPa in 3T3-L1 adipocytes [19], followed
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In mice, supplementation of t10,c12 conjugated linoleic acid (CLA) increases liver mass and

hepatic steatosis via increasing uptake of fatty acids released from adipose tissues. However,

the effects of t10,c12 CLA on hepatic lipid synthesis and the associated mechanisms are largely

unknown. Thus, we tested the hypothesis that gut microbiota-producing t10,c12 CLA would

induce de novo lipogenesis and triglyceride (TG) synthesis in HepG2 cells, promoting lipid

accumulation. It was found that treatment with t10,c12 CLA (100 µM) for 72 h increased

neutral lipid accumulation via enhanced incorporation of acetate, palmitate, oleate, and 2-

deoxyglucose into TG. Furthermore, treatment with t10,c12 CLA led to increased mRNA

expression and protein levels of lipogenic genes including SREBP1, ACC1, FASN, ELOVL6,

GPAT1, and DGAT1, presenting potential mechanisms by which CLA may increase lipid

deposition. Most strikingly, t10,c12 CLA treatment for 3 h increased phosphorylation of

mTOR, S6K, and S6. Taken together, gut microbiota-producing t10,c12 CLA activates hepatic

de novo lipogenesis and TG synthesis through activation of the mTOR/SREBP1 pathway, with

consequent lipid accumulation in HepG2 cells.

Keywords: Conjugated linoleic acid, hepatic steatosis, de novo lipogenesis, triglyceride

synthesis, nutrient sensing mTOR pathway
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by attenuation of adipocyte differentiation, proliferation,

and lipogenesis in adipose tissue [16].

Interestingly, certain populations of gut microbiota are

involved in health-promoting properties via CLA [30], but

their role is still debated. Recently, it was reported that

CLA-producing bacteria could mediate the metabolism in

mice supplemented with both high-fat diet feeding and

prebiotic substrates [12]. Specifically, among various CLA

isomers associated with the presence of gut microbiota,

t10,c12 CLA could be responsible for anti-obesity [25] and

anti-colon cancer activities [22].

However, gut microbiota-producing t10,c12 CLA exerts

contrary effects on hepatic lipid metabolism, with CLA

supplementation promoting increased risk factors for

steatosis and enhanced fat mass in the liver of mice [8, 14,

18, 24, 36]. Evidence providing a biochemical basis for the

effect of CLA isomers on hepatic lipogenesis has recently

emerged. Supplementation with CLA led to increased

triacylglycerol and lipogenic enzyme mRNA levels in the

liver of mice [18]. Hepatic lipogenesis increased progressively,

leading to hepatic steatosis, upon CLA supplementation in

mice [14]. Furthermore, feeding mice a diet supplemented

with 0.3% t10,c12 CLA for 6 weeks resulted in increased

liver mass, while adipose tissue mass decreased markedly

[24]. Hepatic steatosis is induced by multiple factors,

including increased fatty acid influx, diminished β-

oxidation, impaired ApoB containing particle secretion,

and increased lipid synthesis. However, the mechanisms

that underlie CLA-induced hepatic do novo lipogenesis and

lipid synthesis are largely unknown. The present study was

designed to examine the hypothesis that CLA augments

hepatic lipid accumulation via activation of de novo

lipogenesis and lipid synthesis in human hepatoma HepG2

cells. We demonstrate a novel role for the nutrient sensing

mTOR pathway in the stimulatory function of gut

microbiota-producing CLA in hepatocytes.

Materials and Methods

Materials and Reagents

Antibodies for ACC1 (3662s, 1:1,000 dilution; Cell Signaling),

FASN (3189s, 1:1,000 dilution; Cell Signaling), SCD1 (2794s,

1:1,000 dilution; Cell Signaling), ELOVL6 (PA5-13455, 1:500

dilution; Thermo Scientific), DGAT1 (3845-100, 1:500 dilution; Bio

Vision), GPAT1 (GTX85034, 1:1,000 dilution; GeneTex), AKT-

pT308 (4058s, 1:500 dilution; Cell Signaling), AKT (9272s, 1:500

dilution; Cell Signaling), mTOR-pS2448 (2971s, 1:1,000 dilution;

Cell Signaling), mTOR (2972s, 1:1,000 dilution; Cell Signaling),

S6K-pT389 (9205s, 1:400 dilution; Cell Signaling), S6K (2708s, 1:400

dilution; Cell Signaling), S6-pS240/244 (5364s, 1:1,500 dilution;

Cell Signaling), S6 (2217s, 1:1,500 dilution; Cell Signaling), and

GAPDH (3683s, 1:1,500 dilution; Cell Signaling) were purchased

from Cell Signaling Technology. Linoleic acid (free fatty acid

dissolved in ethanol, #90150) and t10,c12 CLA (free fatty acid

dissolved in ethanol, #90145) were purchased from Cayman

Chemical.

Cell Culture

HepG2 cells, a human hepatoma cell line, were maintained in

Dulbecco’s modified Eagle’s medium (DMEM) containing 10%

heat-inactivated fetal bovine serum and 1× penicillin-streptomycin

at 37oC in a humidified O2/CO2 (19:1) atmosphere. For treatment,

HepG2 cells were supplemented with the indicated concentrations

of t10,c12 CLA dissolved in ethanol, or linoleic acid for the

indicated time periods.

Nile Red Staining

HepG2 cells were cultured on collagen-coated glass coverslips

and treated with t10,c12 CLA for 72 h. Cells were fixed with 4%

paraformaldehyde and washed three times with PBS, followed by

staining with 0.1 µg/ml Nile-red (MP Biochemicals) in the dark

for 30 min at ambient temperature. Specimens were examined

using a Nikon Ti-E Eclipse inverted microscope equipped with

Perfect Focus, with excitation and emission filters at 561 nm.

Images were acquired using consistent laser output, gain, and

offset settings for three independent experiments, and 20 cells

were randomly selected and analyzed from each coverslip. Total

fluorescence density was quantified using ImageJ.

Cellular Triglyceride and Cholesterol Ester Analysis

Following a 72 h treatment with linoleic acid (100 µM) or t10,c12

CLA (100 µM), cells were washed with PBS and homogenized in

5% NP-40 in water. Cells were slowly heated to 95oC for 5 min and

then were cooled down to ambient temperature; this was repeated

to solubilize triglyceride. After centrifugation at 14,000 rpm for

2 min, the supernatant was collected for TG and cholesterol

ester (CE) determination using enzymatic kits (Wako). Protein

concentrations were measured using the Bio-Rad protein DC

assay kit with bovine serum albumin as a standard. The TG and

CE contents were normalized to protein concentration.

Incorporation of 14C-Acetate, 14C-Palmitate, 14C-Oleate, and 3H-2-

Deoxyglucose into Triglycerides

HepG2 cells were treated with either linoleic acid (100 µM) or

t10,c12 CLA (100 µM) for 24 h, followed by insulin stimulation

(100 nM) for 4 h. Insulin-stimulated HepG2 cells were incubated

with 25.0 nmol of [1,2-14C]-acetate (specific activity = 54.3 mCi/mmol;

Perkin Elmer), 12.5 nmol [1-14C]-palmitate (specific activity =

60.0 mCi/mmol; Perkin Elmer), 12.5 nmol [1-14C]-oleate (specific

activity = 54.4 mCi/mmol; Perkin Elmer), and 4.0 nmol [1,2-3H]-2-

deoxyglucose (specific activity = 50 Ci/mmol; Perkin Elmer) for

2 h at 37oC in a humidified O2/CO2 (19:1) atmosphere. Cells were

washed three times with PBS prior to harvest using Cellstripper
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(Cellgro). Total cellular lipid was prepared according to the Bligh

and Dyer method [4]. The lower phase containing neutral lipids

was collected and dried under nitrogen gas. Concentrated neutral

lipids were then dissolved in chloroform:methanol (2:1 (v/v)) and

lipid fractions were separated by thin layer chromatography

(TLC, Silica 60 F254; Merck) with organic mobile solvents, hexane/

diethyl ether/acetic acid (70:30:1 (v/v)). Lipid dots were visualized

under UV light and subsequently scraped off for radioactivity

determination using a Beckman LS6500 scintillation counter. 

Quantitative RT-PCR

HepG2 cells were treated with either linoleic acid (100 µM) or

t10,c12 CLA (100 µM) for 72 h. Total RNA was isolated using an

RNeasy Plus Mini Kit (Qiagen Sciences) and complementary DNA

(cDNA) was synthesized from 5 µg of total RNA primed with

random hexamer using Superscripts II reverse transcriptase. Real-

time PCR amplification was performed using iQ SYBR Green

Supermix (Bio-Rad) in an Eppendorf Master cycler RealPlex2 after

adjusting the threshold cycle (Ct). Reactions were performed in

quadruple with an 18S internal control. Relative mRNA levels

were expressed as fold increase compared with the control.

Primer sequences were as shown in Table 1. 

Immunoblotting

Phosphorylation levels of mTOR pathway proteins were determined

by western blotting. HepG2 cells were treated with t10,c12 CLA

(50 or 100 µM) or insulin (100 nM) for 3 h. After treatment, whole

tissue lysates were prepared using cell lysis buffer (Cell Signaling,

#9803) supplemented with a protease and phosphatase inhibitor

cocktail. Protein concentration was determined using the Bio-Rad

protein assay reagent, and extracted protein was solubilized in

Laemmli sample loading buffer. A Bio-Rad mini-gel system was

employed to perform SDS-polyacrylamide gel electrophoresis,

and a Bio-Rad electroblot system was used to transfer proteins to

a PVDF membrane. Transferred proteins were immunoblotted

using target primary antibodies and appropriate HRP-conjugated

secondary antibodies. Enhanced chemiluminescence reagents were

applied to develop the blots, which were then quantified using

Bio-Rad Image Lab software.

Statistical Analysis

All data represent the results from independent quadruples.

Data are expressed as means ± SEM. Comparisons between two

groups were performed using the Student’s t-test. For multiple

comparisons, the LSD test in conjunction with ANOVA was carried

out. A probability value of P < 0.05 was considered as statistically

significant for all experiments. 

Results and Discussion

HepG2 Cells Treated with Gut Microbiota-Producing

t10,c12 CLA Exhibit Increased Accumulation of Cellular

TG 

After digestion and absorption of lipid in the gut, the liver

has a major role in maintaining lipid homeostasis. When

the supply of glucose exceeds its demand, the excess is

converted to fatty acids, which primarily undergo esterification

with glycerol to produce TG and consequently function as

energy stores. In the present study, to investigate the effect

of gut microbiota-producing t10,c12 CLA on hepatic lipid

accumulation, HepG2 cells were treated with linoleic acid

Table 1. Human primer sequences for qRT-PCR. 

Target gene Reverse Forward Accession No.

SREBP1 Forward 5’-ACTTCTGGAGGCATCGCAAGCA-3’ NM_001005291

Reverse 5’-AGGTTCCAGAGGAGGCTACAAG-3’

ACC1 Forward 5’-TTCACTCCACCTTGTCAGCGGA-3’ NM_000664

Reverse 5’-GTCAGAGAAGCAGCCCATCACT-3’

FASN Forward 5’-TTCTACGGCTCCACGCTCTTCC-3’ NM_004104

Reverse 5’-GAAGAGTCTTCGTCAGCCAGGA-3’

SCD1 Forward 5’-CCTGGTTTCACTTGGAGCTGTG-3’ NM_005063

Reverse 5’-TGTGGTGAAGTTGATGTGCCAGC-3’

ELOVL6 Forward 5’-CCATCCAATGGATGCAGGAAAAC-3’ NM_001130721

Reverse 5’-CCAGAGCACTAATGGCTTCCTC-3’

GPAT1 Forward 5’-TTGTGGCTTGCCTGCTCCTCTA-3’ NM_001244949

Reverse 5’-AATCACGAGCCAGGACTTCCTC-3’

DGAT1 Forward 5’-GCTACAGGTCATCTCAGTGCTC-3’ NM_001253891

Reverse 5’-GTGAAGTAGAGCACAGCGATGAG-3’

SREBP1, sterol regulatory element-binding protein 1; ACC1, acetyl-CoA carboxylase 1; FASN, fatty acid synthase; SCD1, stearoyl CoA desaturase 1; ELOVL6,

elongation of very long chain fatty acids protein 6; GPAT1, glycerol-3-phosphate acyltransferase 1; DGAT1, diacylglycerol O-acyltransferase 1.
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(100 µM) or t10,c12 CLA (100 µM) for 72 h. Neutral lipid

storage was examined by Nile-red staining, and was

significantly greater in CLA treated HepG2 cells compared

with untreated and linoleic acid-treated cells (Fig. 1A).

Accordingly, the cellular content of TG, but not CE, was

also considerably higher in CLA-treated HepG2 cells

(Figs. 1B and 1C). Likewise, in vivo studies have shown that

t10,c12 CLA supplementation in mice resulted in increased

lipid deposition, followed by hepatic steatosis [8, 11, 29].

Our findings are consistent with these previous data and,

furthermore, reveal that gut microbiota-producing t10,c12

CLA increases TG accumulation, but not CE, in hepatic

cells.

Gut Microbiota-Producing t10,c12 CLA Enhances Lipid

Synthesis Through Increased Incorporation of Fatty Acids

and Glucose into TG 

The causes of hepatic steatosis are multifactorial and

include increased fatty acid uptake, impaired fatty acid

oxidation and secretion of apoB-containing lipoproteins,

and lipid synthesis. In particular, steatotic conditions are

associated with increased lipid synthesis; thus, the current

study investigated the effects of gut microbiota-producing

t10,c12 CLA on lipid synthesis. To this end, HepG2 cells

treated with 100 µM linoleic acid or 100 µM CLA were

incubated with radioactive substrates including 14C-acetate,
14C-palmitate, 14C-oleate, and 3H-2-deoxyglucose. TG was

isolated by TLC and the 14C incorporations were measured

using a scintillation counter. Treatment with 100 µM t10,c12

CLA resulted in dramatically increased incorporation of

acetate, palmitate, oleate, and 2-deoxyglucose (72%, 43%,

37%, and 80%, respectively) into TG when compared with

treatment with linoleic acid (Figs. 2A-2D). These results

indicate that the observed increase in cellular lipid content

upon gut microbiota-producing t10,c12 CLA treatment may

be associated with enhanced TG synthesis in HepG2 cells.

CLA-Induced De Novo Fatty Acid and TG Syntheses in

HepG2 Cells Is Associated with Increased mRNA and

Protein Levels of Lipogenic Genes 

To study the fundamental mechanisms underpinning

increased hepatic lipid synthesis, mRNA and protein levels

of key lipogenic enzymes and transcription factors were

determined after 24 h of t10,c12 CLA treatment (100 µM).

The mRNA levels of acetyl-CoA carboxylase 1 (ACC1),

fatty acid synthase (FASN), elongation of very long chain

fatty acids 6 (ELOVL6), and glycerol-3-phosphate acyltransferase

1 (GPAT1) were significantly increased in CLA-treated

Fig. 1. (A) Neutral lipid content of HepG2 cells by Nile-red staining and its quantification by ImageJ and (B) triglyceride (TG) and

(C) cholesterol ester (CE) contents measured by enzymatic assays in HepG2 cells. 

Means ± SEM of two independent experiments are shown. LA, linoleic acid; CLA, t10,c12 conjugated linoleic acid. *P < 0.05; **P < 0.01; ***P < 0.001.
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HepG2 cells compared with linoleic acid-treated cells (Fig. 3).

Accordingly, protein levels of lipogenic enzymes, including

ACC1, FASN, ELOVL6, GPAT1, and diacylglycerol

acyltransferase 1 (DGAT1), were significantly increased

following CLA treatment. ACC1 is the initial key and rate-

limiting enzyme in de novo fatty acid synthesis. Several

studies concluded that ACC1 plays a pivotal role in

development of hepatic steatosis related to CLA

supplementation [18, 35]. The second central enzyme in

this pathway is FASN, which utilizes cytosolic malonyl-

CoA produced by ACC1 for de novo fatty acid synthesis and

produces 16-carbon palmitic acid (C16:0). Thus, by increasing

the expressions of ACC1 and FASN, t10,c12 CLA accelerates

hepatic de novo lipogenesis in HepG2 cells. 

Newly synthesized palmitic acid is further desaturated

by stearoyl-CoA desaturase 1 (SCD1) and/or elongated by

ELOVL6. Palmitic acid and stearic acid (C18:0) can be

desaturated to palmitoleic acid (C16:1) and oleic acid

Fig. 2. Incorporation of (A) 14C-acetate, (B) 14C-palmitate, (C) 14C-oleate, and (D) 3H-2-deoxyglucose into triglyceride (TG) in HepG2

cells. 

Means ± SEM of three independent experiments are shown. LA, linoleic acid; CLA, t10,c12 conjugated linoleic acid. ***P < 0.001.

Fig. 3. (A) mRNA expression and (B) protein levels of de novo lipogenesis and triglyceride synthesis. 

Means ± SEM of three independent experiments are shown. LA, linoleic acid; CLA, conjugated linoleic acid. *P < 0.05; **P < 0.01; ***P < 0.001.
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(C18:1) by SCD1. Palmitic acid and palmitoleic acid (C16:1

n7) are converted to stearic acid (C18:0) and vaccenic acid

(C18:1 n7) by ELOVL6. It has been previously shown that

CLA treatment increases the concentration of palmitic acid

and stearic acid [15]. In the current study, we observed

increased mRNA and protein expression levels of ELOVL6,

but not of SCD1, in response to gut microbiota-producing

t10,c12 CLA treatment, supporting that saturated fatty

acids are increased by CLA supplementation. 

Multiple steps and several enzymes are involved in the

formation of TG in the liver, including GPAT1, 1-

acylglycerol-3-phosphate acyltransferase (AGPAT), LIPIN,

and DGAT1. Our results showed that mRNA and protein

levels of GPAT1 and DGAT1 were significantly induced by

t10,c12 CLA, which supports higher TG accumulation and

TG incorporation of various fatty acids and glucose.

SREBP1 is a key regulator of these lipogenic enzymes, and

expression levels of this transcription factor were also

significantly greater following treatment with 100 µM CLA,

compared with linoleic acid treatment, in HepG2 cells.

Thus, the increased lipid content and TG incorporation

observed upon gut microbiota-producing t10,c12 CLA

treatment in HepG2 cells can be explained by augmented

expression levels of lipogenic enzymes and their transcriptional

regulator SREBP1.

CLA Triggers Nutrient Sensing Pathway of mTOR/S6K/

S6 to Activate SREBP1 in HepG2 Cells

Lipid homeostasis is largely influenced by environmental

factors, particularly the digestion and absorption of nutrients

in the gut. The nutrient sensing kinase mTOR is the core

component of the multi-protein complex mTORC1, which

regulates lipid homeostasis by phosphorylating several

ribosomal proteins, including S6K and S6 [23]. It has

recently been reported that mTORC1 directly stimulates

SREBP1, and thus induces the expression of various

lipogenic enzymes [10, 17, 37-39]. In this current study,

strikingly, phosphorylation of mTOR, S6K, and S6 were all

significantly greater in gut microbiota-producing t10,c12

CLA-treated HepG2 cells compared with the control (Fig. 4).

Chung et al. [7] demonstrated that t10,c12 CLA activated

mTOR and its downstream pathway, followed by activation

of lipolysis in human adipocytes. The effects of CLA were

found to be AKT-independent in our study, highlighting

the need for future clarification of the mechanisms of AKT-

independent activation of mTOR. In brief, the current

findings suggest that t10,c12 CLA stimulates mTOR/S6K/

S6 activities, with consequential increased expression of

SREBP1 and activation of lipogenic enzymes in HepG2 cells.

In summary, we successfully confirmed the hypothesis

that CLA increases hepatic steatosis via de novo lipogenesis

and TG synthesis through the nutrient sensing pathway.

We observed a dramatic increase in hepatic lipid accumulation,

cellular TG content, and TG incorporation of fatty acids

and glucose in gut microbiota-producing t10,c12 CLA-

treated HepG2 cells. Through careful dissection of the

lipogenic pathways, we showed enhanced expression of

SREBP1, which is a key transcription factor in lipid

Fig. 4. Analysis of the mTOR pathway and its activation by t10,c12 CLA.

(A) Western blot analysis of mTOR pathways in HepG2 cells. The ratios of phosphorylated to total proteins as measured by densitometry are

shown. Data represent three independent experiments. (B) The schematic of gut microbiota-producing t10,c12 CLA activation of mTOR pathways,

SREBP1, de novo lipogenesis, lipid synthesis, and hepatic lipid deposition. *P < 0.05; **P < 0.01; ***P < 0.001.
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synthesis pathways. The most notable finding of the

present study was that CLA induced the activation of the

nutrient sensing mTOR/S6K/S6 pathway in HepG2 cells.

Taken together, our study underscores the critical role of

gut microbiota-associated CLA in hepatic steatosis on the

liver following digestion/absorption in the gut and identifies

the mTOR/SREBP1 pathway as a major contributor to this

pathology.

Acknowledgments

This work was supported by the Cooperative Research

Program for Agriculture Science & Technology Development

(Project No. PJ009769), Rural Development Administration,

Republic of Korea (Y.K.). 

References

1. Azain MJ, Hausman DB, Sisk MB, Flatt WP, Jewell DE.

2000. Dietary conjugated linoleic acid reduces rat adipose

tissue cell size rather than cell number. J. Nutr. 130: 1548-1554.

2. Bissonauth V, Chouinard Y, Marin J, Leblanc N, Richard D,

Jacques H. 2006. The effects of t10,c12 CLA isomer

compared with c9,t11 CLA isomer on lipid metabolism and

body composition in hamsters. J. Nutr. Biochem. 17: 597-603.

3. Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein

J, Gudmundsen O. 2000. Conjugated linoleic acid reduces

body fat mass in overweight and obese humans. J. Nutr.

130: 2943-2948.

4. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid

extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.

5. Brown JM, Boysen MS, Jensen SS, Morrison RF, Storkson J,

Lea-Currie R, et al. 2003. Isomer-specific regulation of

metabolism and PPARγ signaling by CLA in human

preadipocytes. J. Lipid Res. 44: 1287-1300.

6. Choi Y, Kim YC, Han YB, Park Y, Pariza MW, Ntambi JM.

2000. The trans-10,cis-12 isomer of conjugated linoleic acid

downregulates stearoyl-CoA desaturase 1 gene expression

in 3T3-L1 adipocytes. J. Nutr. 130: 1920-1924.

7. Chung S, Brown JM, Sandberg MB, McIntosh M. 2005.

Trans-10,cis-12 CLA increases adipocyte lipolysis and alters

lipid droplet-associated proteins: role of mTOR and ERK

signaling. J. Lipid Res. 46: 885-895.

8. Clément L, Poirier H, Niot I, Bocher V, Guerre-Millo M,

Krief S, et al. 2002. Dietary trans-10,cis-12 conjugated linoleic

acid induces hyperinsulinemia and fatty liver in the mouse.

J. Lipid Res. 43: 1400-1409.

9. Corl BA, Barbano DM, Bauman DE. 2003. Cis-9,trans-11 CLA

derived endogenously from trans-11 18:1 reduces cancer risk

in rats. J. Nutr. 133: 2893-2900.

10. Dalle Pezze P, Sonntag AG, Thien A, Prentzell MT, Gödel

M, Fischer S, et al. 2012. A dynamic network model of

mTOR signaling reveals TSC-independent mTORC2 regulation.

Sci. Signal. 5: 25.

11. Degrace P, Demizieux L, Gresti J, Chardigny JM, Sébédio JL,

Clouet P. 2004. Hepatic steatosis is not due to impaired

fatty acid oxidation capacities in C57BL/6J mice fed the

conjugated trans-10,cis-12-isomer of linoleic acid. J. Nutr.

134: 861-867.

12. Druart C, Neyrinck AM, Dewulf EM, De Backer FC,

Possemiers S, Van de Wiele T, et al. 2013. Implication of

fermentable carbohydrates targeting the gut microbiota on

conjugated linoleic acid production in high-fat-fed mice. Br.

J. Nutr. 18: 1-14.

13. Du M, Ahn DU. 2003. Dietary CLA affects lipid metabolism

in broiler chicks. Lipids 38: 505-511.

14. Ferramosca A, Savy V, Conte L, Colombo S, Einerhand AW,

Zara V. 2006. Conjugated linoleic acid and hepatic lipogenesis

in mouse: role of the mitochondrial citrate carrier. J. Lipid

Res. 47: 1994-2003.

15. Go G, Wu GY, Silvey DT, Choi S, Li XL, Smith SB. 2012.

Lipid metabolism in pigs fed supplemental conjugated

linoleic acid and/or dietary arginine. Amino Acids 43: 1713-

1726.

16. Gregoire FM, Smas CM, Sul HS. 1998. Understanding

adipocyte differentiation. Physiol. Rev. 78: 783-809.

17. Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C,

Trapani F, et al. 2012. Hepatic mTORC2 activates glycolysis

and lipogenesis through Akt, glucokinase, and SREBP1c.

Cell Metab. 15: 725-738.

18. Ide T. 2005. Interaction of fish oil and conjugated linoleic

acid in affecting hepatic activity of lipogenic enzymes and

gene expression in liver and adipose tissue. Diabetes 54: 412-

423.

19. Kang K, Liu W, Albright KJ, Park Y, Pariza MW. 2003. Trans-

10,cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes

and decreases PPARγ expression. Biochem. Biophys. Res.

Commun. 303: 795-799.

20. Kelley DS, Warren JM, Simon VA, Bartolini G, Mackey BE,

Erickson KL. 2002. Similar effects of c9,t11-CLA and t10,c12-

CLA on immune cell functions in mice. Lipids 37: 725-728.

21. Kepler CR, Hirons KP, McNeill JJ, Tove SB. 1966. Intermediates

and products of the biohydrogenation of linoleic acid by

Butyrinvibrio fibrisolvens. J. Biol. Chem. 241: 1350-1354.

22. Kim EJ, Holthuizen PE, Park HS, Ha YL, Jung KC, Park JH.

2002. Trans-10,cis-12-conjugated linoleic acid inhibits Caco-2

colon cancer cell growth. Am. J. Physiol. Gastrointest. Liver

Physiol. 283: G357-G367.

23. Laplante M, Sabatini DM. 2009. An emerging role of mTOR

in lipid biosynthesis. Curr. Biol. 19: R1046-R1052.

24. Li J, Viswanadha S, Loor JJ. 2012. Hepatic metabolic,

inflammatory, and stress-related gene expression in growing

mice consuming a low dose of trans-10,cis-12-conjugated

linoleic acid. J. Lipids 2012: 571281.

25. Martorell P, Llopis S, González N, Montón F, Ortiz P,



1576 Go et al.

J. Microbiol. Biotechnol.

Genovés S, et al. 2012. Caenorhabditis elegans as a model to

study the effectiveness and metabolic targets of dietary

supplements used for obesity treatment: the specific case of

a conjugated linoleic acid mixture (Tonalin). J. Agric. Food

Chem. 60: 11071-11079.

26. Miller A, McGrath E, Stanton C, Devery R. 2003. Vaccenic

acid (t11-18 : 1) is converted to c9,t11-CLA in MCF-7 and

SW480 cancer cells. Lipids 38: 623-632.

27. Pariza MW, Ha YL. 1990. Newly recognized anticarcinogenic

fatty acids. Basic Life Sci. 52: 167-170.

28. Pariza MW, Ha YL, Benjamin H, Sword JT, Grüter A, Chin

SF, et al. 1991. Formation and action of anticarcinogenic

fatty acids. Adv. Exp. Med. Biol. 289: 269-272.

29. Rasooly R, Kelley DS, Greg J, Mackey BE. 2007. Dietary

trans-10,cis-12-conjugated linoleic acid reduces the expression

of fatty acid oxidation and drug detoxification enzymes in

mouse liver. Br. J. Nutr. 97: 58-66.

30. Romero P, Rez GA, Inoue R, Ushida K, Yajima T. 2013. A

rapid method of screening lactic acid bacterial strains for

conjugated linoleic acid production. Biosci Biotechnol. Biochem.

77: 648-650.

31. Smith SB, Lunt DK, Chung KY, Choi CB, Tume RK,

Zembayashi M. 2006. Adiposity, fatty acid composition, and

delta-9 desaturase activity during growth in beef cattle.

Anim. Sci. 77: 478-486.

32. Song HJ, Grant I, Rotondo D, Mohede I, Sattar N, Heys SD,

et al. 2005. Effect of CLA supplementation on immune

function in young healthy volunteers. Eur. J. Clin. Nutr. 59:

508-517.

33. Su ND, Liu XW, Kim MR, Jeong TS, Sok DE. 2003.

Protective action of CLA against oxidative inactivation of

paraoxonase 1, an antioxidant enzyme. Lipids 38: 615-622.

34. Szymczyk B, Pisulewski P, Szczurek W, Hanczakowski P.

2000. The effects of feeding conjugated linoleic acid (CLA)

on rat growth performance, serum lipoproteins and subsequent

lipid composition of selected rat tissues. J. Sci. Food Agric.

80: 1553-1558.

35. Takahashi Y, Kushiro M, Shinohara K, Ide T. 2003. Activity

and mRNA levels of enzymes involved in hepatic fatty acid

synthesis and oxidation in mice fed conjugated linoleic acid.

Biochim. Biophys. Acta 1631: 265-273.

36. Vyas D, Kadegowda AK, Erdman RA. 2012. Dietary

conjugated linoleic acid and hepatic steatosis: species-

specific effects on liver and adipose lipid metabolism and

gene expression. J. Nutr. Metab. 2012: 932928.

37. Yecies JL, Manning BD. 2011. Transcriptional control of cellular

metabolism by mTOR signaling. Cancer Res. 71: 2815-2820.

38. Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky

AI, et al. 2011. Akt stimulates hepatic SREBP1c and lipogenesis

through parallel mTORC1-dependent and independent

pathways. Cell Metab. 14: 21-32.

39. Yuan M, Pino E, Wu L, Kacergis M, Soukas AA. 2012.

Identification of Akt-independent regulation of hepatic lipogenesis

by mammalian target of rapamycin (mTOR) complex 2. J.

Biol. Chem. 287: 29579-29588.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


