DOI QR코드

DOI QR Code

Preparation and Crystal Structures of Silver(I), Mercury(II), and Lead(II) Complexes of Oxathia-Tribenzo-Macrocycles

  • Siewe, Arlette Deukam (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Ju, Huiyeong (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Shim Sung (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University)
  • Received : 2012.11.20
  • Accepted : 2012.12.03
  • Published : 2013.03.20

Abstract

An investigation of the coordination behavior of sulfur-containing mixed-donor tribenzo-macrocycles $L^1-L^3$ ($L^1$: 20-membered $O_3S_2$, $L^2$: 20-membered $O_2S_3$, and $L^3$: 23-membered $O_4S_2$) with $d^{10}$-metal ($Ag^+$, $Hg^{2+}$, and $Pb^{2+}$) salts is reported. The X-ray structures of five complexes (1-5) with different structural types and stoichiometries, including mono- to dinuclear species have been determined. Reactions of $L^2$ and $L^3$ with the silver(I) salts ($PF_6{^-}$ and $SCN^-$) afforded two dinuclear 2:2 (metal-to-ligand) complexes with different arrangements: a sandwich-type cyclic dinuclear complex $[Ag_2(L^2)_2](PF_6)_2{\cdot}3CH_2Cl_2$ (1) and a linear dinuclear complex $[Ag_2(L^3)_2(SCN)_2]$ (2), in which two monosilver(I) complex units are linked by an Ag-Ag contact. Reactions of $L^1$ and $L^2$ with mercury(II) salts ($SCN^-$ and $Cl^-$) gave a mononuclear 1:1 complexes $[Hg(L^1)(SCN)_2]$ (3) and $[Hg(L^2)Cl_2]$ (4) with anion coordination in both cases. $L^2$ reacts with lead(II) perchlorate to yield a mononuclear sandwich-type complex $[Pb(L^2)_2(ClO_4)_2]$ (5), giving an overall metal coordination geometry of eight with a square antiprism arrangement. From these results, the effects of the donor variation and the anioncoordination ability on the resulting topologies of the soft metal complexes are discussed.

Keywords

References

  1. Wolf, R. E., Jr.; Hartman, J. R.; Storey, J. M. E.; Foxman, B. M.; Cooper, S. R. J. Am. Chem. Soc. 1987, 109, 4328. https://doi.org/10.1021/ja00248a031
  2. Blake, A. G.; Schroder, M. Adv. Inorg. Chem. 1990, 35, 1. https://doi.org/10.1016/S0898-8838(08)60160-9
  3. Hill, S. E.; Feller, D. J. Phys. Chem. A 2000, 104, 652. https://doi.org/10.1021/jp993188l
  4. Lee, J. Y.; Kim, H. J.; Jung, J. H.; Sim, W.; Lee, S. S. J. Am. Chem. Soc. 2008, 130, 13838. https://doi.org/10.1021/ja805337n
  5. Lee, J. Y.; Lee, S. Y.; Sim, W.; Park, K.-M.; Kim, J.; Lee, S. S. J. Am. Chem. Soc. 2008, 130, 6902. https://doi.org/10.1021/ja8008693
  6. Kim, H. J.; Lee, S. S. Inorg. Chem. 2008, 47, 10807. https://doi.org/10.1021/ic801316e
  7. Lee, J. Y.; Lee, S. Y.; Park, S.; Kwon, J.; Sim, W.; Lee, S. S. Inorg. Chem. 2009, 48, 8934. https://doi.org/10.1021/ic901314b
  8. Lee, S. Y.; Park, S.; Lee, S. S. Inorg. Chem. 2009, 48, 11335. https://doi.org/10.1021/ic901902t
  9. Jin, Y.; Kim, H. J.; Lee, J. Y.; Lee, S. Y.; Shim, W. J.; Hong, S. H.; Lee, S. S. Inorg. Chem. 2010, 49, 10241. https://doi.org/10.1021/ic101880r
  10. Jo, M.; Seo, J.; Seo, M. L.; Choi, K. S.; Cha, S. K.; Lindoy, L. F.; Lee, S. S. Inorg. Chem. 2009, 48, 8186. https://doi.org/10.1021/ic901009r
  11. Jo, M.; Seo, J.; Lindoy, L. F.; Lee, S. S. Dalton Trans. 2009, 6096.
  12. Yoon, I.; Seo, J.; Lee, J.-E.; Song, M. R.; Lee, S. Y.; Choi, K. S.; Jung, O.- S.; Park, K.-M.; Lee, S. S. Dalton Trans. 2005, 2352.
  13. Kang, E.-J.; Lee, S. Y.; Lee, S. S. Inorg. Chem. 2010, 49, 7510. https://doi.org/10.1021/ic1007473
  14. Park, S.; Lee, S. Y.; Park, K.-M.; Lee, S. S. Acc. Chem. Res. 2012, 45, 391. https://doi.org/10.1021/ar200143n
  15. APEX2 Version 2009.1-0 Data Collection and Processing Software; Bruker AXS Inc., Madison, WI, 2008.
  16. SHELXTL-PC (Version 6.22) Program for Solution and Refinement of Crystal Structures; Bruker AXS Inc., Madison, WI, 2001.
  17. Jansen, M. Angew. Chem. Int. Ed. Engl. 1987, 26, 1098. https://doi.org/10.1002/anie.198710981
  18. Lee, E.; Seo, J.; Lee, S. S.; Park, K.-M. Cryst. Growth Des. 2012, 12, 3834. https://doi.org/10.1021/cg300692y
  19. Ju, H.; Lee, S. S. Cryst. Growth Des. 2012, 12, 4972. https://doi.org/10.1021/cg3008987
  20. Addison, A. W.; Rao, T. N.; Reedijk, J.; Van Rijin, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349.
  21. Kim, H. J.; Lindoy, L. F.; Lee, S. S. Cryst. Growth Des. 2010, 10, 3850. https://doi.org/10.1021/cg100687v
  22. Lee, J.-E.; Lee, J. Y.; Seo, J.; Lee, S. Y.; Kim, H. J.; Park, S.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Polyhedron 2008, 27, 3004. https://doi.org/10.1016/j.poly.2008.06.011
  23. Park, S.; Jang, H.-J.; Lee, S. S. Bull. Korean Chem. Soc. 2012, 33, 301. https://doi.org/10.5012/bkcs.2012.33.1.301
  24. Lee, S. Y.; Park, S.; Kim, H. J.; Jung, J. H.; Lee, S. S. Inorg. Chem. 2008, 47, 1913. https://doi.org/10.1021/ic702496e
  25. Byriel, K. A.; Gahan, L. R.; Kennard, C. H. L.; Sunderland, C. J. J. Chem. Soc., Dalton Trans. 1993, 625.
  26. Hambley, T. W.; Afshar, S.; Marcus, S. T.; Gahan, L. R. Aust. J. Chem. 1999, 52, 1. https://doi.org/10.1071/C98096
  27. Park, S.; Lee, S. S.; Jo, M.; Lee, J. Y.; Lee, S. S. CrystEngComm 2009, 11, 43. https://doi.org/10.1039/b814051k
  28. Li, X.-P.; Zhang, J.-Y.; Liu, Y.; Pan, M.; Zheng, S.-R.; Kang, B.-S.; Su, C.-Y. Inorg. Chim. Acta 2007, 360, 2990. https://doi.org/10.1016/j.ica.2007.02.024
  29. Spencer, E. C.; Mariyatra, M. B.; Howard, J. A. K.; Kenwright, A. M.; Panchanatheswaran, K. J. Organomet. Chem. 2007, 692, 1081. https://doi.org/10.1016/j.jorganchem.2006.11.002
  30. Zhou, J.; Yuan, Y.-Z.; Liu, X.; Li, D.-Q.; Zhou, Z.; Chen, Z.-F.; Yu, K.-B. J. Coord. Chem. 2003, 56, 761. https://doi.org/10.1080/0095897031000100007
  31. Zhua, L.-H.; Zenga, M.-H.; Yea, B.-H.; Chen, X.-M. Z. Anorg. Allg. Chem. 2004, 630, 952. https://doi.org/10.1002/zaac.200300275
  32. Lyczko, K.; Starosta, W.; Persson, I. Inorg. Chem. 2007, 46, 4402. https://doi.org/10.1021/ic061561f
  33. Chan, M.-L.; Rossi, M. Inorg. Chem. 1997, 36, 3609. https://doi.org/10.1021/ic970059f

Cited by

  1. Hydrothermal Synthesis, Crystal Structures and Properties of Zinc(II) Di-nuclear Complex and Copper(I) Coordination Polymer Based on Building Block 2-Phenyl-4,6-di(pyridin-2-yl)pyrimidine vol.34, pp.12, 2013, https://doi.org/10.5012/bkcs.2013.34.12.3743
  2. -Donor Macrocycle and Its Disilver(I) Bis(Macrocycle) and Monocadmium(II) Complexes vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10533
  3. Macrocycle Incorporating Two Pyridines: First Examples of an Infinite Mercury(I) Complex and a Dumbbell-Shaped Heteronuclear Complex with a Macrocyclic Ligand vol.55, pp.21, 2016, https://doi.org/10.1021/acs.inorgchem.6b01583