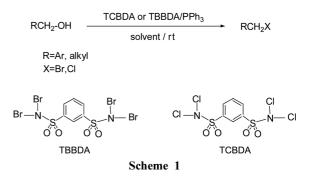
N,N,N',N'-Tetrahalobenzene-1,3-disulfonamide/PPh₃ as an Efficient System for the Preparation of Alkyl Halides

Ramin Ghorbani-Vaghei,* Lotfi Shiri, and Arash Ghorbani-Choghamarani*

Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65174, Hamedan, Iran *E-mail: rgvaghei@yahoo.com *Department of Chemistry, Faculty of Sciences, Ilam University, Ilam 69315516, Iran Received December 5, 2012, Accepted December 14, 2012

N,*N*,*N*',*N*'-Tetrabromobenzene-1,3-disulfonamide (TBBDA)/PPh₃ and *N*,*N*,*N*',*N*'-tetrachlorobenzene-1,3-disulfonamide (TCBDA)/PPh₃ are two highly reactive reagent systems for the conversion of alcohols corresponding into alkyl chlorides and bromides in moderate to excellent yields in dichloromethane at room temperature under mild and neutral conditions.

Key Words : Alcohol, Alkyl halide, *N*,*N*,*N*',*N*'-Tetrabromobenzene-1,3-disulfonamide (TBBDA), *N*,*N*,*N*',*N*'-Tetrachlorobenzene-1,3-disulfonamide (TCBDA), Triphenylphosphine (PPh₃)


Introduction

The conversion of alcohols to the corresponding alkyl halides is one of the important transformations in organic synthesis. Alkyl halides are versatile synthetically intermediates that can easily be converted into a variety of other functional groups. Alkyl chlorides classically are prepared by the reaction of alcohols with chlorinating agents such as SOCl₂, POCl₃, PCl₅¹⁻³ and TCT/DMF⁴ or combined systems of PPh₃ with CCl₄,⁵ Cl₃CCCl₃,⁶ Cl₃CCOCCl₃,⁷ Cl₃CCN,⁸ Cl₃CCONH₂,⁹ and TCCA.¹⁰ Similarly, alkyl bromides can be synthesized by using POBr₃,¹¹ PBr₃¹² or combined systems of PPh₃ with bromosaccharin (NBSac),¹³ Br₃CCO₂Et,¹⁴ Br₃CCOCBr₃,¹⁵ CBr₄¹⁶ and HCl/ZnCl₂¹⁷ are used as brominating agents. Some of above mentioned procedures suffer from several drawbacks such as tedious work-up procedure, low yields of products, expensive reagents and catalysts.

Triphenylphosphine is a fairly general reducing agent and its reactions with selected oxidants can lead to the formation of phosphonium intermediates. Phosphorus in these intermediates is positively charged and its reaction as a strong oxophilic reagent in most cases is driven by the formation of thermodynamically favoured triphenylphosphine oxide.¹⁸

N,N,N',N'-Tetrabromobenzene-1,3-disulfonamide [TBBDA] and N,N,N',N'-tetrachlorobenzene-1,3-disulfonamide [TCBDA] are efficient halogenating agents.^{19m,o} These compounds are effective catalysts and reagents for various organic transformations.¹⁹ Since TBBDA and TCBDA contain halogen atoms which are attached to nitrogen atoms. It is possible they release *in situ* X⁺ which can act as an electrophilic species. Therefore, it would be expected that the interaction of PPh₃ with TBBDA or TCBDA generates phosphonium halides as reactive phosphonium species in Mitsunobu reactions.

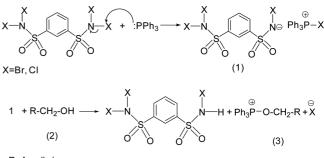
On this basis and continuing our recent interests in the application of N,N,N',N'-tetrabromobenzene-1,3-disulfonamide and N,N,N',N'-tetrachlorobenzene-1,3-disulfonamide in organic synthesis,¹⁹ we report that N,N,N',N'-tetrabromo-

benzene-1,3-disulfonamide and N,N,N',N'-tetrachlorobenzene-1,3-disulfonamide in combination with PPh₃ are highly reactive media for the conversion of alcoholic compounds to the corresponding alkyl bromides and chlorides in solvent at room temperature under neutral conditions (Scheme 1).

In order to optimize the reaction conditions, we first examined the effects of different molar ratios of N,N,N',N'tetrabromobenzene-1,3-disulfonamide (TBBDA)/triphenylphosphine in CH₃CN as solvent or N,N,N',N'-tetrachlorobenzene-1,3-disulfonamide (TCBDA)/triphenylphosphine in CH₂Cl₂ as solvent at room temperature for the conversion of 4-chlorobenzyl alcohol to 4-chlorobenzyl bromide and 4chorobenzyl chloride as model reaction. We found that the optimized molar ratio for the conversion of 4-chlorobenzyl alcohol to 4-chlorobenzyl chloride was 1/0.55/2 (4-chlorobenzyl alcohol/TCBDA/PPh₃) and for the bromination of 4chlorobenzyl alcohol to 4-chlorobenzyl bromide was 1/0.55/ 2 (4-chorobenzyl alcohol/TBBDA/PPh₃). This method is general and can be easily applied for the conversion of a variety of primary, secondary, benzylic and allylic alcohols to their corresponding alkyl halides using TCBDA and/or TBBDA with PPh₃ (Table 1). Although, the ability of TBBDA to oxidize alcohols has been demonstrated, in all the cases we studied, no oxidation products were observed.^{19p}

The reaction works well for benzylic alcohols substituted with electron-donating or electron-withdrawing groups and

Efficient Preparation of Alkyl Halides


 Table 1. Conversion of alcohols into their alkyl bromides and alkyl chlorides with TBBDA/PPh3 and TCBDA /PPh3

Entry	Substrate	Product ^a	Time (min)	Yield $(\%)^b$
1	СН2ОН	CH ₂ CI	Immediately	90
		CH ₂ Br	Immediately	90
2	O2N-CH2OH	O2N-CH2CI	Immediately	91
			Immediately	92 ^{<i>d</i>}
3	Br-CH ₂ OH	Br-CH ₂ CI	Immediately	88
		Br-CH ₂ Br	Immediately	93
4	СІ — СН2ОН		Immediately	90
		CI CH ₂ Br	Immediately	94
5	⊂ Сн₂он CI		Immediately	87
		CI	2 min	92
6	CI-∕⊂− CH₂OH CI	`CI CI-∕∕∕ CH₂CI	Immediately	93
		CI CI CI CI	2 min	94
7	F-CH2OH	F→CH₂CI	Immediately	88
		F-CH ₂ Br	Immediately	90
	СН ₂ ОН F	CH ₂ CI	Immediately	91
8		F CH ₂ Br	Immediately	93
9	СН ₂ ОН F	F CH ₂ CI	Immediately	90
		CH ₂ Br	2 min	91
10	phCH ₂ OH	-	Immediately	92
10		ph-CH ₂ Br	2 min	95
11	(CH ₃) ₃ C-CH ₂ ((CH ₃) ₃ C-CH ₂ CI	Immediately	89
		(CH ₃) ₃ C-CH ₂ Br	3 min	90
12	СН2СН2ОН	CH2CH2CI	Immediately	87
			Immediately	86
13	CH=CHCH ₂ OH	CH=CHCH ₂ CI	Immediately	91
		CH=CHCH ₂ Br	Immediately	90

Table 1. Continued

Entry	Substrate	Product ^a	Time (min) Yield $(\%)^b$	
14	CH ₃ (CH ₂) ₅ CH ₂ OH	CH ₃ (CH ₂) ₅ CH ₂ CI	Immediately	87
		$CH_3(CH_2)_5CH_2Br$	Immediately	86
15	OH L CH ₃ (CH ₂) ₄ CHCH ₃	CI CH ₃ (CH ₂) ₄ CHCH ₃	5 min	90
		Br CH ₃ (CH ₂) ₄ CHCH ₃	10 min	97
			10 min	87
16	OH ph-CH-ph	CI I ph-CH-ph	5 min	87
		Br I ph-CH-ph	135 min	93 ^c

^{*a*}Products were characterized from their physical properties, by comparison with authentic samples, and by spectroscopic methods. ^{*b*}Isolated yield after column chromatography. ^{*c*}Reaction conditions: alcohol (1 mmol), PPh₃ (2.5 mmol), TBBDA (0.7 mmol), rt. ^{*d*}Reaction conditions: alcohol (1 mmol), PPh₃ (3 mmol), TBBDA (0.8 mmol), rt.

R=Ar, alkyl

F

$$\stackrel{\oplus}{\xrightarrow{}}_{O_{7}} O_{H_{2}-R} + X \longrightarrow O=PPh_{3} + RCH_{2}X$$
(3)

Scheme 2

produce the corresponding halides at room temperature with good to excellent yields (Table 1). We found that the bromination of alcohols did not proceed well in CH₂Cl₂. However, this reaction proceeded smoothly in CH₃CN as solvent and the corresponding bromides were isolated with high yields (Table 1).

Proposed mechanism for this transformation proceeds by the activation of the triphenylphosphine by reaction with the *N*-halo compounds, which leads to intermediate 1. Then, nucleophilic attack of alcohol 2 on this intermediate gives intermediate 3. Finally nucleophilic attack of halide anion on intermediate 3 gives alkyl halide and triphenylphosphine oxide (Scheme 2).¹³

In conclusion, TBBDA/PPh₃ and/or TCBDA/PPh₃ are mild and efficient reagent systems for the conversion of alcohols into alkyl chlorides and alkyl bromides. These procedures have same good advantages such as simple work-up, high yields, short reaction times and the occurrence of the reactions at room temperature.

Experimental

General. Chemicals were purchased from Fluka, Merck and Aldrich chemical companies. The acetylated products were characterized by comparison of their spectral (IR, ¹H

822 Bull. Korean Chem. Soc. 2013, Vol. 34, No. 3

NMR, and ¹³C NMR) and physical data with authentic samples.

Typical Procedure for the Synthesis of Alkyl Chlorides: To a stirred mixture of TCBDA (0.55 mmol) and PPh₃ (2 mmol) in dry CH_2Cl_2 (5 mL), alcohol (1 mmol) was added at room temperature. The progress of the reaction monitored by TLC. After completion of the reaction (Table 1), the solvent was evaporated. The crude products were purified by short column chromatography (packed with silica gel, using *n*-hexane/ethyl acetate (8:2) as eluent) to achieve desired alkyl chloride with good to high yields.

Typical Procedure for the Synthesis of Alkyl Bromides: To the mixture of TBBDA (0.55 mmol) and PPh₃ (2 mmol) in dry CH₃CN (5 mL), alcohol (1 mmol) was added at room temperature. The progress of the reaction monitored by TLC. After completion of the reaction (Table 1), the solvent was evaporated. The crude products were purified by short column chromatography (packed with silica gel, using *n*-hexane/ethyl acetate (8:2) as eluent) to achieve desired alkyl bromide with good to excellent yields.

Acknowledgments. We are thankful to Bu-Ali Sina University, Center of Excellence and Development of Chemical Methods (CEDCM) for financial support.

References

- Vanlaer, S.; Voet, A.; Gielens, C.; De Maeyer, M.; Compernolle, F. Eur. J. Org. Chem. 2009, 643.
- Mojumdar, S. C.; Simon, P.; Krutosikova, A. J. Therm. Anal. Calorim. 2009, 96, 103.
- Morgentin, R.; Jung, F.; Lamorlette, M.; Maudet, M.; Menard, M.; Plé, P.; Pasquet, G.; Renaud, F. *Tetrahedron* 2009, 65, 757.
- 4. Luca, L. D.; Giacomelli, G.; Porcheddu, A. J. Org. Chem. 2002, 4, 553.
- 5. Snyder, E. I. J. Org. Chem. 1972, 37, 1466.
- 6. Bringmann, G.; Schneider, S. Synthesis 1983, 139.
- 7. Magid, R. M.; Fruchey, O. S.; Johnson, W. L. Tetrahedron Lett.

Ramin Ghorbani-Vaghei et al.

1977, 18, 2999.

- Matveeva, E. D.; Yalovskaya, A. I.; Cherepanov, I. A.; Bundel, Y. G; Kurts, A. L. *Zh. Org. Khim.* **1991**, *27*, 1611.
- 9. Pluempanupat, W.; Chavasiri, W. Tetrahedron Lett. 2006, 47, 6821.
- 10. Hiegel, G. A.; Rubino, M. Synth. Commun. 2002, 32, 2691.
- Quallich, G. J.; Fox, D. E.; Friedmann, R. C.; Murtiashaw, C. W. J. Org. Chem. 1992, 57, 761.
- 12. Sato, N.; Narita, N. J. Heterocycl. Chem. 1999, 36, 783.
- Firouzabadi, H.; Iranpoor, N.; Ebrahimzadeh, F. *Tetrahedron Lett.* 2006, 47, 1771.
- Tongkate, P.; Pluempanupat, W.; Chavasiri, W. *Tetrahedron Lett.* 2008, 49, 1146.
- 15. Joseph, K. M.; Larraza-Sanchez, I. Tetrahedron Lett. 2011, 52, 13.
- Kijrungphaiboon, W.; Chantarariwong, O.; Chavasiri, W. Tetrahedron Lett. 2012, 53, 674.
- 17. Whaley, A. M.; Copenhaver, J. E. J. Am. Chem. Soc. 1938, 60, 2497.
- 18. Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N.; Firouzabadi, D. *Tetrahedron Lett.* **2006**, *47*, 6879.
- 19. (a) Ghorbani-Vaghei, R.; Akbari-Dadamahaleh, S. Tetrahedron Lett. 2009, 50, 1055. (b) Ghorbani-Vaghei, R.; Khazaei, A. Tetrahedron Lett. 2003, 44, 7525. (c) Ghorbani-Vaghei, R.; Zolgol, M. A.; Chegeny, M.; Veisi, H. Tetrahedron Lett. 2006, 47, 4505. (d) Ghorbani-Vaghei, R.; Chegini, M.; Veisi, H.; Karimi-Tabar, M. Tetrahedron Lett. 2009, 50, 1861. (e) Ghorbani-Vaghei, R.; Amiri, M.; Moshfeghifar, N.; Veisi, H.; Akbari-Dadamahaleh, S. J. Iran. Chem. Soc. 2009, 6, 754. (f) Ghorbani-Vaghei, R.; Shahbazee, E.; Veisi, H. Mendeleev. Commun. 2005, 15, 207. (g) Ghorbani-Vaghei, R.; Shahbazee, E. J. Braz. Chem. Soc. 2005, 16, 647. (h) Ghorbani-Vaghei, R.; Veisi, H. Mol. Diversity 2010, 14, 249. (i) Ghorbani-Vaghei, R.; Karimi-Nami, R.; Toghraei-Semiromi, Z.; Amiri, M.; Ghavidel, M. Tetrahedron 2011, 67, 1930. (j) Ghorbani-Vaghei, R.; Veisi, H.; Amiri, M. J. Iran. Chem. Soc. 2009, 6, 761. (k) Veisi, H.; Ghorbani-Vaghei, R.; Mahmoodi, J. Bull. Korean Chem. Soc. 2011, 32, 3692. (1) Ghorbani-Vaghei, R.; Veisi, H. J. Braz. Chem. Soc. 2005, 21, 193. (m) Ghorbani-Vaghei, R.; Veisi, H. Synthesis 2009, 945. (n) Ghorbani-Vaghei, R.; Shahbazi, H.; Veisi, H. Tetrahedron Lett. 2012, 53, 2325. (o) Ghorbani-Vaghei, R.; Jalili, H. Synthesis 2005, 1099. (p) Ghorbani-Vaghei, R.; Veisi, H.; Amiri, M. J. Chin. Chem. Soc. 2007, 54, 1257.