
Molecular Modeling of Small Molecules as BVDV NS5B RdRp Inhibitors  Bull. Korean Chem. Soc. 2013, Vol. 34, No. 3     837

http://dx.doi.org/10.5012/bkcs.2013.34.3.837

Molecular Modeling of Small Molecules as BVDV RNA-Dependent RNA 

Polymerase Allosteric Inhibitors

Han-ha Chai,* Dajeong Lim, Hee-yeoul Chai,† and Eunkyoung Jung‡

Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, 

Suwon 441-706, Korea. *E-mail: hanha@korea.kr
†Division of Biosafety Evaluation and Control, Korea National Institute of Health, Chungcheongbuk-do 363-951, Korea 

‡Insilicotech Co. Ltd., C-602 Korea Bio Park, Gyeonggi-Do 463-400, Korea 

Received October 9, 2012, Accepted December 18, 2012

Bovine viral diarrhea virus (BVDV), a major pathogen of cattle, is a well-characterized pestivirus which has

been used as a good model virus for HCV. The RNA-dependent RNA polymerase (RdRp) plays a key role in

the RNA replication process, thus it has been targeted for antivirus drugs. We employed two-dimensional

quantitative structure-activity relationship (2D-QSAR) and molecular field analysis (MFA) to identify the

molecular substructure requirements, and the particular characteristics resulted in increased inhibitory activity

for the known series of compounds to act as effective BVDV inhibitors. The 2D-QSAR study provided the

rationale concept for changes in the structure to have more potent analogs focused on the class of

arylazoenamines, benzimidazoles, and acridine derivatives with an optimal subset of descriptors, which have

significantly contributed to overall anti-BVDV activity. MFA represented the molecular patterns responsible

for the actions of antiviral compound at their receptors. We conclude that the polarity and the polarizability of

a molecule play a main role in the inhibitory activity of BVDV inhibitors in the QSAR modeling. 
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Introduction

Bovine viral diarrhea virus (BVDV) is a major bovine
pathogen that will become the most wide-spread virus in
cattle. BVDV infection may also be one of the main reasons
for economic losses in the livestock industry. For the United
States alone, this translates roughly into an average loss of
$10 to $40 per calving.2 The infection can cause a decrease
in milk production, reduced reproductive performance, growth
retardation, and increased mortality among young stock
causing immune system dysfunction and a predisposition to
secondary viral and bacterial infections.1-3 Currently, there is
no specific antiviral agent directed against BVDV infection,
although it may be contained by vaccines and control pro-
grams. Therefore, antiviral lead compounds that specifically
inhibit the replication of the virus are very important to treat
expensive animals in breeding programs, since they could be
used to safeguard cattle that live on farms in close proximity
to an infected farm with anti-BVDV drugs on hand; vac-
cines do not confer protection until 10 to 14 days after being
administered. On the other hand, BVDV relies on the host
cell for its replication and a single replication cycle of
BVDV lasts 10 to 20 h.24,25 

BVDV, a Flaviviridae Pestivirus, has been a good model
virus for investigating HCV, which is a member of genus
Hepacivirus, which belongs to the same family. BVDV, like
HCV, is a small enveloped virus, with a diameter between 43
and 58 nm that has a single 12.6 kb plus-strand RNA genome
encoded in a single polyprotein (NH2

-Npro-C-Erms-E1-E2-P7-
NS2-NS3-NS4A-NS4B-NS5A-NS5B-COOH).4,5 The proto-

typic representative of BVDV and HCV is different, but they
largely share a similar replication cycle and molecular
characteristics. The NS5B of both viruses has RNA-depen-
dent RNA polymerase (RdRp) activity and the NS5B RdRp
is responsible for genome replication, which alone is capable
of RNA synthesis as a part of a larger membrane-associated
replicase complex.6 This is why the NS5B RdRp is the main
target of antiviral compound research. Over the past eight
years, there have been many screening efforts targeting BVDV
RdRp, resulting in the identification of potent inhibitors.
This has allowed researchers to understand the structure-
activity relationship (SAR) in addition to developing novel,
more effective lead compounds for inhibition of BVDV
replication. Discovery of small molecule inhibitors of BVDV
RdRp as a potential therapeutic target has been reported in
the literature with various scaffolds, such as imidazopyri-
dines,7-11 benzimidazole derivatives,12,13 arylazoenamines,14,15

indole derivatives,16 γ-carboline derivatives,17 thiosemicabar-
zone,18 diphenylmethane,19,20 and aromatic cationic mole-
cules.21,22 The majority of anti-BVDV inhibitors could also
be taken as an accurate measurement of antiviral activity
against HCV or other Pestiviruses (e.g., CSFV, BDV) and
Flaviviruses (e.g., YFV, WNV, DENV) in the same family
for the purpose of exploiting approved treatments. However,
the direct relationship between anti-BVDV activity and
HCV blocking activity is not known, if BVDV was used as a
surrogate system for HCV. Recently some anti-BVDV hits
have been identified by both experimental approaches and
molecular modeling of the pharmacophore and the binding
interactions; for example arylazoenamines14,15 and imidazo-
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pyridines.10,11 Based on this scaffold, a series of compounds
have been analyzed by ligand and structure-based design
methods and will be further optimized for prevention and
control of BVDV, HCV, and other single strand RNA viruses.

A three-dimensional quantitative structure-activity relation-
ship (3D-QSAR) approach, such as molecular field analysis
(MFA) or pharmacophore models have widely been used not
only to find small molecules complementary in shape and
charge to a biomolecular target but also to provide a mole-
cular framework that carries the essential features responsi-
ble for biological activity.23 In this research, we built several
QSAR models for a series of arylazoenamine derivatives14

using 2D-QSAR and MFA to understand the effects of
structure on activity, which make it possible to predict the
properties of basic aromatic analogues. Further results can
be used to understand interactions between the molecule's
functional groups of highest activity with those of BVDV
RdRp. To obtain insight into the key structural features
affecting the activity, we used the biological data of anti-
BVDV to apply a few standards: (i) all activity values of a
series molecule having various scaffolds in the data set must
be obtained by definitive experimental conditions, methods,
and procedures; (ii) biological data for the model should also
include a wide range of activity; (iii) the data collected in the
training set should reflect as much as possible the complete
property space for the class of molecules since the QSAR
results can be used to confidently predict the most likely
compounds of the best activity; and (iv) the external valida-
tion set must be different from the training and test set of
compounds, and satisfy conditions (i) and (ii). 

Recently, M. Tonelli et al. reported that arylazoenamines
have been synthesized and evaluated in cell-based assays for

cytotoxicity and antiviral activity against most frequently
affected viruses such as CVB-2 (Coxsackie virus type B2),
RSV (Respiratory syncytial virus), and BVDV. They used
the computational approach to identify predictive pharmaco-
phore models for them,14 and to estimate the docking proce-
dure with previously known pharmacophore constants and
binding affinity of active compounds for the RdRp.15 Like
M. Tonelli et al., we explore the potential of this class of
molecules as starting inhibitors of BVDV RdRp, because
arylazoenamines mimic the effect of aryl and basic moieties.
Its basic derivatives can be considered as biological activity
and correlating the variation in this activity to the changes in
polarity, electronic distribution, and H-bonding or its elect-
ron withdrawing properties. The aromatic portion of this
molecule shall prove to be essential for specificity and
potency through hydrophobic interactions. Of particular
importance is the role of aromatic ring stacking at the
allosteric active site near the substrate-binding site of BVDV
RdRp, which has the appropriate shape and size for specific
binding of aromatic rings. Our predictive QSAR models
were made in two stages: (i) a local model aimed at parti-
cular series of arylazoenamines for both training and test
sets, and then (ii) the local model expanded to a global
model, which should be validated with a more diverse set of
basic aromatic derivatives as the prediction set. 

Materials and Methods

Selection of Molecules and Biological Data. We took a
data set of 60 arylazoenamines for QSAR models targeted to
BVDV NS5B polymerase from the literature.14,15 To validate
the models, we tested 24 benzimidazoles12 and 10 acridine

Figure 1. (a) The distribution of biological data (EC50 in M) in a data set of 60 arylazoenamines and (b) the split data set in chemical spaces
defined by atom type expended connectivity of fingerprint (ECFP6) and atom type path-based fingerprint (EPFP6) in 47 training (green)
and 13 test (red) sets from the original data. 
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derivatives26 against the same binding target on a prediction
set. The biological data obtained is EC50: 50% effective con-
centration in µM, which is the amount required to achieve
50% protection of MDBK cells from BVDV-induced cyto-
pathogenicity, as determined by the MTT method. Of the 60
arylazoenamines, eleven compounds exhibited high activity
with EC50 in the range of 0.8-10 µM, and the other 20
compounds had EC50 between 11 and 30 µM. Only 29
compounds had EC50 in the range 31-100 µM (Fig. 1(a)).
They were converted into pEC50 (-log EC50) values and used
as dependent variables in QSAR models. To build QSAR
models, the compounds from the original data were split into
training and test sets. Since the predictive power of the
QSAR model relies on the quality of the training and test
sets, the distribution represented in Figure 1 can then be used

to get an indication of biological activity and the structural
similarity/diversity in the original data set of arylazoenamines
before effectively dividing the data into a training set and a
test set. In choosing a small subset to represent a large data
set, both the similarity of the structural diversity (Fig. 1(b))
and the range of biological activity were clustered using the
Pareto optimization method as shown Figure 1. In Fig. 1(b),
the spilt analysis was given to evaluate the distribution of the
two data sets in various chemical species using two principal
components as ECFP6 and EPFP6 molecular fingerprints
which encode both the electronic state and topological
environments of an atom in a molecule 36, thus can measure
the structural diversities for all data set. Therefore, this
proved the information that molecules in training set may
reflect the similar property spaces with those in a test set.

Figure 2. (a) The most active compound 30 structure in the arylazoenamines, (b) The region is used as a substructure for alignment, (c) all
of the structures in the analogue series based on a defined substructure (b) in the active molecule are aligned. 

Table 1. Structure, actual and predicted activities for 63 arylazoenamines based on the best 2D/3D QSAR models

Comp. Aryl=
Actual 

pEC50

2D-QSAR 3D-QSAR (MFA)
Test setb

Predicted Residuala Predicted Residuala

1 4-F-Ph 4.252 3.917 0.335 4.089 0.163

2 2-Cl-Ph 4.000 4.145 -0.145 3.934 0.066

3 3-Cl-Ph 4.699 4.732 -0.033 4.655 0.044

4 4-Cl-Ph 4.222 3.998 0.224 4.296 -0.074

5 3-Br-Ph 5.000 4.829  0.171 4.933 0.067

6 4-Br-Ph 4.229 4.029 0.200 4.231 -0.002

7 3-CF3-Ph 5.097 4.591 0.506 4.918 0.179

8 3-NO2-Ph 4.000 3.981 0.019 4.295 -0.295 Test

9 4-NO2-Ph 4.066 3.785 0.281 4.507 -0.441 Test

10 3,4-DiCl-Ph 4.523 4.496 0.027 4.573 -0.050

11 3,5-DiCF3-Ph 4.509 4.341  0.168 4.318  0.191 Test

12 3-CF3-4-F-Ph 4.000 4.469 -0.469 4.213 -0.213

13 3-CF3-4-Cl-Ph 4.456 4.323 0.133 4.261 0.195

14 3-CF3-4-Br-Ph 4.215 4.364 -0.149 4.101 0.114 Test

15 1-Naphthyl 5.222 5.377 -0.155 5.237 -0.015

16 7-Chloro-1-quinolyl 5.301 5.410 -0.109 5.306 -0.005

17 4-Cl-Ph 4.523 4.475 0.048 4.559 -0.036
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Table 1. Continued

Comp. Aryl=
Actual 

pEC50

2D-QSAR 3D-QSAR (MFA)
Test setb

Predicted Residuala Predicted Residuala

18 3-NO2-Ph 4.167 4.333 -0.166 4.510 -0.343 Test

19 3,4-DiCl-Ph 4.174 4.651 -0.477 4.422 -0.248

20 3-CF3-4-Cl-Ph 4.678 4.656 0.022 4.617  0.060

21 1-Naphthyl 5.456 5.344 0.112 5.418  0.038

R = CH3

22 Phenyl 4.000 4.318 -0.318 4.067 -0.067

23 4-F-Ph 4.319 4.145 0.174 4.443 -0.124

24 2-Cl-Ph 4.000 4.455 -0.455 3.876 0.124

25 3-Cl-Ph 4.921 4.513 0.408 4.768 0.153

26 4-Cl-Ph 4.237 4.235 0.002 4.510 -0.274

27 3-Br-Ph 4.721 4.560  0.161 4.507 0.214 Test

28 4-Br-Ph 4.222 4.269 -0.047 4.661 -0.439 Test

29 3-CF3-Ph 4.046 4.545 -0.499 4.107 -0.061

30 3-NO2-Ph 6.097 6.074  0.023 5.946 0.151

31 4-NO2-Ph 4.959 4.996 -0.037 4.590 0.368

32 4-CH3-Ph 4.000 4.390 -0.390 4.040 -0.040

33 3,5-DiCF3-Ph 4.194 4.128 0.066 4.310 -0.116

34 3-CF3-4-F-Ph 4.000 4.272 -0.272 4.218 -0.218

35 3-CF3-4-Cl-Ph 4.553 4.343  0.210 4.323  0.230

36 3-CF3-4-Br-Ph 4.398 4.397  0.001 4.465 -0.067

37 3-NO2-4-Cl-Ph 4.215 4.285 -0.070 4.530 -0.315

38 PentaF-Ph 4.000 3.938  0.062 4.223 -0.223

39 1-Naphthyl 5.301 5.029  0.272 5.101 0.200

R = CH2-C6H5

40 3-CF3-4-Cl-Ph 4.553 4.299 0.254 4.546 0.007 Test

R = CH3

41 Phenyl 5.000 4.684 0.316 4.587 0.413

42 4-F-Ph 4.745 4.526  0.219 4.717 0.028

43 4-Cl-Ph 4.678 4.607  0.071 4.724 -0.046

44 3-Br-Ph 5.046 4.984  0.062 4.839 0.207 Test

45 4-Br-Ph 4.959 4.635  0.324 4.634 0.325 Test

46 3-CF3-Ph 4.678 5.084 -0.406 5.372 -0.695

47 3-NO2-Ph 5.260 5.185  0.075 5.186  0.074

48 4-NO2-Ph 4.721 4.395  0.326 4.808 -0.087

49 4-CH3-Ph 4.699 4.743 -0.044 4.533  0.166

50 4-CH3O-Ph 4.745 4.924 -0.179 4.663  0.082

51 3,4-DiCl-Ph 4.796 4.573  0.223 4.634  0.162 Test

52 3,5-DiCF3-Ph 4.444 4.420  0.024 4.514 -0.070

53 3-CF3-4-F-Ph 4.000 4.509 -0.509 4.060 -0.060

54 3-CF3-4-Br-Ph 4.337 4.596 -0.259 4.679 -0.342 Test

55 PentaF-Ph 4.000 4.122 -0.122 4.127 -0.127

R = CH2-C6H5

56 Phenyl 4.131 4.575 -0.444 4.189 -0.059

57 4-Cl-Ph 4.745 4.306  0.439 4.505  0.240

58 4-CH3-Ph 4.658 4.739 -0.081 4.643  0.015

59 3,4-DiCl-Ph 4.102 4.346 -0.244 3.868  0.234

60 3-CF3-4-Cl-Ph 4.854 4.593  0.261 4.692  0.162 Test

aResidual = actual pEC50 − predicted pEC50. 
bThe test set molecules are represented as Test 
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Then 47 compounds (78% of the original data set) were
selected for training set and 13 compounds (22% of the
original data set) for the test set; the most active compound
(compound 30, Fig. 2(a)) was included in the training set.
The structure and biological data and predicted activity of the
compounds in the training and test set are listed in Table 1.

Molecular Modeling. Three-dimensional structure build-
ing and all computational studies were performed with the

Discovery Studio (DS) 3.0 molecular modeling package27 on
a personal workstation. Molecular structures were built with
Sketcher program, then the molecular geometric structures
were generated into the local lowest energy conformation
minimized by the CHARMm28,29 force field with a distance-
dependent dielectric function, steepest descent method, a
convergence criterion of 0.001 kcal/mol. Partial atomic
charges were also calculated using the CHARMm method.

Table 2. Structure and predicted activities of both 24 benzimidazoles and 10 acridine derivatives using 2D/3D QSAR models

Comp. R1 R2 Z
Actual

pEC50

2D-QSAR 3D-QSAR(MFA)

Predicted Residualc Predicted Residualc

61 NH2 7.000 5.172 1.828 - -

62 NHCH2CH2OH 6.222 5.582 0.640 - -

63 NHCH(Et)CH2OH 5.097 5.556 -0.459 - -

64 NHCH(iPr)CH2OH 6.222 5.604  0.618 - -

65 NHCH2(CH2)3-CH2OH 5.824 5.530  0.294 - -

66 NHCH2-2-C4H4O 5.886 5.883  0.003 - -

67 NHCH2CH2-N(CH2CH2)2O 5.699 5.685  0.014 - -

68 NHCH2CH2CH2-N(CH2CH2)2O 5.301 5.585 -0.284 - -

69 NHN(CH2CH2)2-NCH3 5.523 5.849 -0.326 - -

70 NH-3-N(CH)5 5.222 5.412 -0.190 - -

71 5-CF3 4-OCH3 6.000 4.504  1.496 5.267 0.733

72 5-COCH3 2,4-DiOCH3 4.377 4.037  0.340 5.078 -0.701

73 Cha 4.222 4.378 -0.156 5.265 -1.043

74 H COCH3 4.046 4.503 -0.457 5.225 -1.179

75 H COCH2CH3 4.328 4.663 -0.335 5.123 -0.795

76 H COCH2-N(CH2)4 5.000 4.920  0.080 5.350 -0.350

77 H COCH2-N(CH2)5 5.155 4.873 0.282 5.376 -0.222

78 5-CF3 H 4.824 3.989 0.835 5.248 -0.424

79 5-CF3 COCH3 5.886 4.865  1.021 5.120 0.766

80 5-CF3 COCH2-N(C2H5)2 5.699 5.398  0.301 5.005 0.694

81 5-CF3 COCH2-N(CH2)4 5.523 5.399 0.124 5.036  0.487

82 5-CF3 COCH2-N(CH2)5 5.699 5.361 0.338 5.290 0.409

83 5,6-DiCl COCH3 6.000 5.002 0.998 5.689 0.311

84 5,6-DiCl COCH2-N(CH2)4 5.602 5.480 0.122 5.755 -0.153

85 5,6-DiCl COCH2-N(CH2)5 5.699 5.406 0.293 5.744 -0.045

86 5,6-DiCl COCH2-N(CH2CH2)2O 5.620 5.181 0.439 5.574 0.046

87 5,6-DiCl COCH2- N(CH2CH2)2N-CH3 5.398 5.324 0.074 5.759 -0.361

88 H CH3 4.161 3.843 0.318 5.177 -1.016

89 COCH2-N(C2H5)2 CH3 5.000 5.210 -0.210 5.123 -0.123

90 COCH2-N(CH2)4 CH3 5.155 5.109  0.046 5.065 0.090

91 COCH2-N(CH2)5 CH3 5.222 5.050  0.172 5.007 0.215

92 COCH2- N(CH2CH2)2S CH3 5.097 4.957  0.140 5.001 0.096

93 COCH2- N(CH2CH2)2N-C6H5 CH3 4.824 4.969 -0.145 4.903 -0.079

94 H Adab 5.155 4.365  0.790 4.617 0.538

aCh = Cyclohexyl. bAda = 1-Adamantyl. cResidual = actual pEC50 − predicted pEC50
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To gain reliable information about the correlation between
molecular structure and activity, the active structure for each
molecule must be known; however, none of the compounds
have the structure of a BVDV NS5B polymerase/inhibitor
complex. Molecular flexibility was calculated for each
compound using Poling method30,31 and recorded as a collec-
tion of conformers over a 0-20 kcal/mol interval above the
global energy minimum computed for each molecule, and
was limited to a maximum of 250 in the conformational
space. In this paper, we hypothesized that the active con-
former was the minimum energy conformer of the most
active compound (compound 30, Fig. 2). 

Molecular alignment in the studied compounds was achieved
using a specified substructure (Fig. 2(b)) as the localized
common subgroup with the active conformer of the most
active compound, computed using the collective root mean
square (RMS) of their atomic coordinates via producing the
best superposition. In this method, the sum of squares of the
distances is minimized between all atoms to be super-
imposed based on a defined substructure as a common
feature.32 For the substructure alignment, we quickly explore
the core substructure which is common to all molecules in
the total data set including 24 benzimidazoles and 10
acridine derivatives to use aromaticity as done by ISIS and
then the molecules and the substructure are aligned using all
the mapping to the one with the best RMSD is selected in the
process. As the criteria for substructure searching was
considered as these aromatic units are a key factor in the
aromatic ring stacking at the allosteric active site of BVDV
RdRp and are also found in many molecules from candidate
inhibitors to BVDV and HCV target. So we think the all data
sets collected in the study are giving us information that
might allow us to improve how understanding the aromatic
ring stacking and hydrophobic interactions are going to be
important for that class of BVDV allosteric inhibitors. The
resulting stereoview of the total set of aligned molecules is
shown in Figure 2. The structure of each molecule was used
to build the QSAR models. The 2D-QSAR study included
2D-descriptors (topological representation) and 3D-descriptors
(geometrical representation). The descriptors were calcu-
lated after substructure alignment in all molecules. 

2D-QSAR Models of Generation. The physicochemical
properties of each molecule were quantified with the various

types of descriptors using property calculations within the
QSAR+ module. They were characterized by molecular
formats, fragment counts, molecular structure, and properties
that depended on their topological or geometrical features.
The resulting physical and chemical properties for each
molecule were thus reduced to numbers or sequences of
numbers by utilizing atomic coordinates and connectivity. In
generating a 2D-QSAR model, we excluded a descriptor as
an independent variable if any of the variables were constant
or highly correlated with another variable for all the
compounds. A complete list of remaining descriptors in the
study used for 2D-QSAR models is given and described in
Table 3.

For the development of 2D-QSAR models, the statistical
method used genetic function approximation (GFA)33-35 to
generate a population of equations for the correlation bet-
ween biological activity and physicochemical properties.
GFA uses multiple models to provide different insights into
the inquiry system using an evolutionary algorithm that
combines Holland's genetic algorithm with Friedman's multi-
variate adaptive regression splines (MARS).37,38 In our present
study, the GFA method works with a randomly generated
population of 45,000 equations using a measure of the
fitness of each model. Then, pairs of parent equations are
chosen from this set of 45,000 equations and mutation
operations are performed to create 45,000 new children
equations by repeatedly replacing the worst rated models
with better rated models with at most 600,000 evolutionary
steps. A key feature of GFA is that it uses linear splines,
which produce an accurate interpolation model for the data
set. Other default settings were maintained, including the
smoothing parameter (d) value of 0.5. We used 4 and 8 for
the initial and maximum equation length value, respectively,
instead of using constant equation length. The goodness of
each generated equation was evaluated on how well it fit the
data and the model's predictive power with Friedman's lack
of fit (LOF) score.38 

Molecular Field Analysis. MFA provides valuable infor-
mation about the correlation between the fields and the
activity using energy grids, since descriptors are computed
by interaction energy both as a set of aligned molecules and
as a probe designed to measure steric (van der Waals carbon
CH3) and electrostatic (positive point charge H+) effects at a

Table 3. A list of remaining descriptors and their types used in building 2D-QSAR models by GFA method

Type Descriptors 

Structural Number of aromatic bonds, number of heavy atoms, number of hydrogen-bond acceptors, number of atoms with 

positive charge atoms, number of rings, number of rotatable bonds, number of 5 rings and 6 rings 

Spatial Jurs descriptors, principal moments of inertia, Shadow indices, radius of gyration 

Electronic Dipole moment, sum of atomic polarizabilities, the pKa of all ionizable sites, Electrotopological-state indices 

Topological Connectivity indices, wiener index, Zagreb index, kappa shape indices, Graph-theoretical Info content descriptors, 

Balaban indices, Subgraph counts

Thermodynamic Log of the partition coefficient, molecular refractivity and AlogP for each molecule and partition the atomic surface 

areas, atomic surface area for each atom in the molecule, molecular solubility

Shape and volume The total solvent accessible surface area and volume using 3D coordinates, Polar surface area, the ratio of the polar 

surface area divided by the total surface area, fractional polar solvent accessible surface area 
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series of points.39,40 Regression models built from whole
molecular steric and electrostatic fields can be useful for
predicting activity and for visualizing favorable and un-
favorable interactions. MFA attempts to represent the essen-
tial features of a receptor site from the aligned common
features of molecules in a 3D isosurface. MFA would be
very useful in the current study with available activity data
assuming that each structure exhibits the same binding site
on BVDV NS5B RdRp. Since the accuracy of MFA depends
on the activity and the diversity of the compounds, poor
results are possible if used on compounds with a narrow
range of activity or that were highly diverse. If all compounds
are aligned in a pharmacologically active orientation, diverse
molecules may have very different orientations, and thus
generated features may not be reliable. This was carefully
considered during the current study. For a set of pre-aligned
structures, the energy fields were generated through the H+

and CH3 probes using a grid spacing of 1.5 Å around the
structure. The MFA first calculates the smallest lattice box
containing energy grids around the structure, then extends
each side of the box by 8.0 (half the grid extension in each
direction). A correlation threshold is applied to avoid ex-
tremely large or small grid energy values which are less than
1.5 Å or greater than 4.0 Å from any compound atom. Then,
an energy cutoff of 5.0 kcal was applied for the remaining
grids when assigning the CHARMm atom partial charges to
be used in a set of bond-charge-increment rules. A field with
1314 CHARMm energy grids was generated. We used the
genetic partial least squares (G/PLS) method with a maximum
of 600,000 iterations and a population size of 45,000. The
smoothing parameter (d) was kept at 0.5. The optimum
number of components was set to 4 and equation length was
fixed at 9, including a constant. We validated both the 2D-
QSAR models and MFA analysis with a pre-divided test set
of 13 arylazoenamines and performed external validation by
applying the model to a prediction set of basic aromatic class

molecules. Both sets of molecules have known activities but
were not used in model generation. 

Results and Discussion

In the QSAR study, the models were selected in an attempt
to discover which main substituents of molecules affect
biological activity and which do not. In replacing functional
groups, we observed the quantitative effect of them on the
biological activity to establish their role in the molecules and
BVDV NS5B RdRp interactions. The important functional
groups that are required for the anti-BVDV NS5B RdRp
activity and their relative positions in space with respect to
each other should be identified. We also investigated the
influence of portions of parts of the basic aromatic mole-
cules on the BVDV inhibitor activity. 

2D-QSAR Models Analysis. We performed QSAR models
with the assumption of one-to-one correspondence between
anti-BVDV activity of the 47 arylazoenamines and their
molecular structures. The 2D-QSAR models generated five
population equations with various lengths of analyzed mole-
cular properties, molecular descriptors or their combinations
on the conformation of dependent molecules using GFA
linear regression and linear splines for effective search of the
best multiparameter correlations in large spaces. The 2D-
QSAR models are shown in Table 4 with varying number of
terms along with the statistical parameters. The models were
selected at 95% confidence level. The 2D-QSAR models
built on the training set were judged with their suitability
based on (i) Friedman LOF score adapted to measure the
fitness of a GFA model during the evolution process and (ii)
the predicted capacity of the models using the predictive r2

equivalent to r2
CV from a leave-1-out (LOO) internal cross

validation and r2
pred external validation. The score of a 2D-

QSAR model is likely to be optimistic if used to assess the
predictive performance of a model since the r2

CV value in the

Table 4. Statistical evaluations of 2D-QSAR models for anti-BVDV RdRp with varying number of descriptors in the training set (n=47)

Eq. NoDescriptor equation LOF r2 r2
adj r2

CV RMS
S.O.R.

p-value

1 pEC50 = 2.2024 + 3.8867(BIC) − 0.089619(VSA_AtomicAreas[1]) + 261.56 

(Jurs_FNAS_3 + 0.012306) + 1.4765(396.12-Jurs_TASA)

0.196 0.643 0.609 0.565 0.320 5.869e−9

2 pEC50 = 1.8106 + 0.19323(Dipole_Y) + 1.0934(IC) − 0.1165(VSA_AtomicAreas[15]) 

+ 199.69(Jurs_FNSA_3+0.01209) + 1.0625(396.63-Jurs_TASA)

0.194 0.707 0.671 0.640 0.293 5.506e−10

3 pEC50 = 4.9507 + 0.18411(Dipole_Y) − 0.15005(VSA_Atomic Areas[15]) +  

0.015678(VSA_PartialCharge[7]) + 2.5157(IC-3.6072) + 1.005(396.73-Jurs_TASA)

0.196 0.703 0.667 0.626 0.295 7.097e−10

4 pEC50 = 5.5774 + 0.25189(Dipole_Y) − 0.18114(VSA_AtomicAreas[15]) − 0.024799 

(VSA_AtomicArea[18]) + 0.013908 (VSA_PartialCharge[7]) + 6.2608(Jurs_RPCG-

0.22359) + 2.198(395.88-Jurs_TASA)

0.199 0.755 0.718 0.687 0.271 8.233e−11

5 pEC50 = 6.9303 + 0.25999(Dipole_Y) − 4.5083(Jurs_RNCG) − 0.10485 

(VSA_AtomicAreas[13]) − 0.17367(VSA_AtomicAreas[15] +  0.020278 

(VSA_PartialCharge[7]) + 2.6747(0.6457-CIC) + 1.1944(396.63-Jurs_TASA)

0.194 0.809 0.775 0.723 0.243 3.553e−12

Friedman LOF is measured as LOF=SSE/{1−(c+dp)/m}2 where SSE is the sum of squares of errors, c is the number of basis functions other than the
constant term, d is a smoothing parameter, p is the total number of features and M is the number of samples in the training set. r2 is the square of
correlation coefficient as SSR/SST where SST is the total sum of squares and SSR is deviation between SST and SSE. r2

adj is square of adjusted
correlation coefficient as 1−[{SSE/(p−1)}/{SST/(n−p)}] where n is the number of data points and this penalize equations containing too many terms to
justify their quality of fit. r2

CV is leave-1-out (LOO) internal variance. RMS is squared root mean residual error. S.O.R. p-value is the p-value for
significance or regression. 
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training set and the predictive performance (r2
pred) are best

assessed with a test set separated from the training data.
Their predictive power was calculated by r2

CV = 1-PRESS(training)/
SST(training), where PRESS(training) is the predicted sum of
squares of a model, and SST(training) is the mean-corrected
sum of squares of responses over the training set on LOO
internal cross-validation. The r2

pred value is (SD-PRESStest)/
SD in the test set, in which SD41 is the sum of squares of
deviations between the biological activity of each molecule
and the mean activity of the training set, and PRESStest is the
sum of squares of deviations between the predicted and
actual activity values for every molecule in the test set.
Occasionally, the value of both r2

CV and r2
pred should be more

than 0.5, which is considered an acceptable model. 
As shown Table 4, the LOF measure cannot be reduced by

adding more terms to the regression model; unlike the least
squares measure, in which new terms may reduce the sum of
squares of errors (SSE), increasing both the number of terms
and the smoothing parameter tends to increase the LOF
score. In other words, the LOF measure resists over-fitting
for the addition of basic functions to the equation in such a
way to penalizing through control over the smoothing para-
meter. As a result, the LOF score can detect an over-fitting
problem better than the SSE measure, so it was selected as a
score function during GFA to assess the goodness of fit of
each progeny equation. This indicates that Lower values of
Friedman's LOF for each generated equation are less likely
to the GFA model will fit the data. Moreover, if r2

CV is much
less than r2, the model equation will be probably over-fit the
data. The measures are used to determine whether the
regression is statistically significant or not. The statistically
significant 2D-QSAR model in the training set for anti-
BVDV NS5B RdRp is shown as follows:

 
pEC50 = 1.8106 + 0.19323(Dipole Y) + 1.0934(IC) 

− 0.1165(VSA AtomicAreas[15]) 
+ 0.9969(Jurs FNSA3 + 0.01209) 
+ 1.0625(396.63-Jurs TASA) (1)

ntraining = 47, LOF = 0.194, r2 = 0.707, r2
adj = 0.671, 

r2
CV = 0.640, RMS = 0.293; ntest = 13, r2

pred = 0.655,
PRESStest = 0.542, SDEPtest = 0.204, SPRESS,test = 0.301;
npred = 34, r2

valid = 0.666, PRESSpred = 11.538, 
SDEPpred = 0.583, SPRESS,pred = 0.654. 

Other statistical measures were also used in the test and
prediction set. The prediction error of the measure is the
standard deviation of the error of prediction (SDEP) as
(PRESS/n)1/2, and SPRESS is standard deviation based on
PRESS(SPRESS) as [PRESS/(n-p-1)]1/2, in which n is the
number of compounds and p is the number of predictor
variables.42,43 The above model could explain 67.1% of the
adjusted coefficient of variation. The LOO in internal cross
validation found predicted variance to be 64.0%. The
predicted power on external validation for this model was
observed to be 65.5% and 66.6% in the test and prediction
set, respectively. This is based on the model, which can be
inferred to be viable because the differences between the

values of r2
CV, r2

pred and r2
valid were much less than 0.3. In the

criteria mentioned above, Eq. (1) was selected for the final
2D-QSAR model and it found satisfactory results for pre-
dicting the activities of the test set (Table 1) further validat-
ing the prediction set (Table 2). 

The most accurate mapping descriptors formatted to Eq.
(1) that were deemed important for explaining BVDV
antiviral activity were selected in the mode share, a common
property of the molecules. The inhibition activity of BVDV
RdRp can be described as the molecular descriptors like
Dipole Y (the Y component of the dipole moment), IC (the
overall information content as the graph-theoretical mole-
cular descriptor defined on basis of the Shannon information
theory50), VSA AtomicAreas[15] (the van der waals surface
area on atomic number 15), Jurs FNSA3 (the atomic charge
weighted fractional partial negative surface areas), and Jurs
TASA (total hydrophobic surface area). This analysis allows
for identifying molecular properties positively and negative-
ly related to the activity in question. Among them, the dipole
Y component and IC descriptor are directly related in that
the positive coefficients in Eq. (1) are conducive for anti-
BVDV activity. The related importance of the descriptors
appearing in the GFA equation based on their regression
coefficients is in order to highly correlated Jurs TASA, VSA
AtomicAreas [15], Dipole Y, IC, and Jurs FNSA3 with
changes in the antiviral activity. For Eq. (1), the polarity and
polarizability of a molecule are most closely correlated with
the overall patterns of anti-BVDV activity. As a measure of
the polarity of a compound, the Y component of the mole-
cular dipole moment reflects only a partial of polarities of a
molecule along the Y axis, while local polarity is represent-
ed by Jurs FNSA3 calculated for a fragment of a molecule.
The polarizability has also been related to hydrophobicity as
Jurs TASA and thus to the anti-BVDV activity. The dipole
moment as a descriptor related to 3D charge distribution
captures a special electronic polarization related to the
strength and spatial orientation of a molecule.44,45 This di-
pole property may be correlated to long range electrostatic
interaction as the driving force of recognition and subsequent
binding to BVDV RdRp polymerase. Charged partial surface
area (CPSA) descriptors, which map atomic partial charges
on the solvent-accessible surface area (SASA) of individual
atoms of the whole molecule or a fragment thereof were
invented by Jurs et al.47,48 and can be encoded as the features
responsible for polar interactions between molecules. Jurs
FNSA3 has been defined as a description of the fractional
atomic charged weighted partial negative surface area and is
a measure of the polarity of a molecule, and the atomic total
hydrophobic surface area (Jurs TASA) descriptor is the sum
of atoms with an absolute value of partial charges less than
0.2. 

The prediction of this series of arylazoenamine revealed
some interesting trends. The presence of a naphthyl group at
the Aryl substituent generally confers higher anti-BVDV
activity than the phenyl group for the arylazohexahydro-
quinolizines A and arylazohexahydroindolizines B and aryl-
azotetrahydropyridines C, as seen by comparing compounds



Molecular Modeling of Small Molecules as BVDV NS5B RdRp Inhibitors  Bull. Korean Chem. Soc. 2013, Vol. 34, No. 3     845

22 and 39 with their corresponding compounds 15 and 21.
The presence of aromatic moieties of some size in a flat
plane at the position seems to be important for antiviral

activity, which has been an expressive descriptor of Jurs
TASA values and which increase in good correlation with
the actual activity. In another location (R-group), increasing

Table 5. The values of selected descriptors used in 2D-QSAR models

Cpd. 

no.

Dipole 

Y
IC

VSA Atomic 

area[15]

Jurs 

FNSA3

Jurs

TASA

Cpd. 

no.

Dipole 

Y
IC

VSA Atomic 

area[15]

Jurs 

FNSA3

Jurs

TASA

Training set Test set

1 -1.188 3.156 9.564 -0.026 454.866 8 -5.091 3.690 7.552 -0.078 444.005

2 -1.198 3.366 9.564 -0.014 511.096 9 -3.277 3.404 9.564 -0.078 439.666

3 -1.105 3.471 5.672 -0.019 519.513 11 -1.571 3.277 6.427 -0.068 603.828

4 -0.768 3.156 9.564 -0.020 519.953 14 -2.910 3.534 6.427 -0.039 575.589

5 -1.390 3.471 4.365 -0.016 535.429 18 -2.242 3.722 9.564 -0.081 424.828

6 -0.607 3.156 9.564 -0.016 526.546 27 -1.226 3.750 9.564 -0.019 488.208

7 -1.950 3.572 6.427 -0.042 549.924 28 -0.607 3.375 9.564 -0.019 477.500

10 -1.830 3.384 5.672 -0.025 545.748 40 -2.029 3.654 9.564 -0.044 606.247

12 -2.363 3.534 6.427 -0.038 565.504 44 -0.887 3.875 7.657 -0.020 493.108

13 -3.123 3.534 6.427 -0.040 570.942 45 -0.569 3.500 7.657 -0.020 482.190

15  0.125 3.114 6.427 -0.008 579.185 51  0.608 3.735 7.657 -0.024 507.195

16 -1.920 3.175 4.066 -0.007 594.350 54 -2.221 3.735 7.657 -0.021 514.262

17 -0.729 3.170 5.672 -0.020 499.279 60 -2.111 3.734 7.657 -0.040 608.262

19 -1.151 3.406 5.672 -0.027 522.332 Prediction set 

20 -1.943 3.550 5.672 -0.047 552.206 61 2.570 3.503 8.291 -0.045 409.709

21  0.017 3.154 6.427 -0.008 549.797 62  1.336 3.821 5.700 -0.056 442.856

22 -0.061 3.323 9.564 -0.014 449.644 63  1.345 3.795 5.700 -0.053 488.243

23 -1.251 3.375 9.564 -0.030 412.793 64 1.315 3.844 5.700 -0.045 526.558

24 -1.058 3.625 9.564 -0.018 476.184 65  1.457 3.752 5.700 -0.047 528.396

25 -1.468 3.750 9.564 -0.018 479.172 66  3.757 3.668 5.700 -0.038 529.355

26 -0.784 3.375 9.564 -0.023 472.424 67  1.845 3.825 5.700 -0.042 548.088

29 -1.510 3.787 9.564 -0.048 500.934 68  1.590 3.778 5.700 -0.040 598.351

30 -3.106 3.948 9.564 -0.087 395.061 69  2.745 3.924 6.716 -0.032 542.680

31 -3.414 3.614 9.564 -0.087 395.677 70  1.498 3.637 5.700 -0.044 489.026

32  0.020 3.375 9.564 -0.012 477.720 71 1.341 3.065 7.867 -0.066 461.579

33 -1.376 3.382 9.564 -0.075 556.494 72 -1.364 3.296 9.564 -0.033 484.500

34 -2.554 3.722 9.564 -0.058 472.183 73 -0.383 3.220 7.552 -0.126 402.379

35 -2.190 3.722 9.564 -0.051 522.481 74  1.026 3.301 9.564 -0.043 415.36

36 -1.907 3.722 9.564 -0.047 522.278 75  1.167 3.422 9.564 -0.037 450.993

37 -3.680 3.932 9.564 -0.086 420.736 76  1.104 3.668 9.564 -0.035 519.632

38 -1.388 3.061 8.162 -0.021 484.681 77  0.938 3.654 9.564 -0.033 548.103

39  0.048 3.432 9.564 -0.009 524.574 78 0.177 2.766 7.552 -0.068 434.463

41 -0.069 3.457 7.657 -0.015 452.425 79  2.419 3.171 7.552 -0.072 464.747

42 -1.137 3.500 7.657 -0.032 417.370 80 2.357 3.669 7.552 -0.059 587.698

43 -0.716 3.500 7.657 -0.024 481.144 81  2.363 3.669 7.552 -0.059 578.994

46 -0.470 3.892 7.657 -0.048 505.959 82  2.196 3.664 7.552 -0.056 605.551

47 -0.888 4.059 7.657 -0.088 400.207 83 2.915 3.423 9.564 -0.054 454.041

48 -3.087 3.725 7.657 -0.087 400.057 84  2.863 3.869 9.564 -0.044 575.890

49 -0.013 3.500 7.657 -0.013 477.906 85 2.569 3.853 9.564 -0.042 600.497

50  0.279 3.614 7.657 -0.018 525.126 86  1.410 3.853 9.564 -0.056 557.543

52 -1.504 3.469 7.657 -0.075 560.117 87 1.921 3.893 9.564 -0.044 598.246

53 -2.553 3.735 7.656 -0.030 458.195 88 -2.452 3.096 7.552 -0.062 460.469

55 -1.306 3.161 7.657 -0.021 491.462 89  0.042 3.096 7.552 -0.053 625.966

56 -0.012 3.346 7.657 -0.014 536.534 90 -0.478 3.096 7.552 -0.055 609.545

57 -1.732 3.304 7.657 -0.016 568.783 91 -0.719 3.895 7.552 -0.053 625.479

58  0.191 3.404 7.657 -0.012 567.639 92 -1.204 3.895 7.552 -0.063 628.069

59 -2.671 3.607 7.657 -0.020 596.417 93 -0.952 3.935 7.552 -0.055 636.375

94 -2.596 3.600 7.552 -0.047 596.644
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the Jurs TASA values reduces the inhibitor effect of
molecules, and the R group's size in arylazomethylenepyri-
dines D (compounds 41 and 56) are smaller and have more
inhibitory activity than the corresponding aromatic ring
congeners. Also, an NO2 functional group bound on an Aryl
substituent conducts electron redistribution with conjugated
π-bond and leads to varied growth in its π-electron density
and electron donating properties. The stronger H-bonding
acceptor ability for arylazotetrahydropyridines C compounds
30, 31, 47, and 48 results in analogues with increased inhibitory
activity. Introduction of an NO2 group bound phenyl ring for
the arylazohexahydroquinolizines A and arylazohexahydro-
indolizines B resulted in reduced activity (8, 9, and 18),
which was predicted by the calculated dipole moment Y
component (Dipole Y), Jurs FNSA3, and Info Content (IC)46

descriptors. The reduced activity is particularly expressed by
the IC descriptor because of the constitution and topology of
the molecules. The induction effect at the position was con-
sidered with the electrostatic interaction between the bond
dipoles and the partial charges of the atom, so the magnitude
of this polarization depends on the molecular structure
according to the size, degree of branching and overall shape.
The IC descriptor uses graph-theory concepts to represent
different molecular structures and is a very good description
of the induction effect, the van der Waals effect, and hydro-
gen bonding using a topological approach for special mole-
cular connectivity terms.49 The induction effect may depend
on the solvent in which the process or property of compounds
would be indirectly founded, which complicates these
descriptors. The van der Waals surface area (VSA) for each
atom (VSA AtomicAreas) in a molecule is related to the
intra-molecular dispersion effect. In Eq. (1), the VSA on
atomic number 15 (VSA AtomicAreas [15]) indirectly reflects
the effects of a substituent bound to the common subgroup at
a particular location; see, for example, the dispersion effect
of the meta-substituted Aryl group in arylazohexahydro-
quinolizines A compounds 3, 5, 7, and 8. Comparing these
compounds, as the size of the substituent's bound atom
number 15, VSA decreases (VSA AtomicAreas [15]). This
causes substantial changes in the polarizability and dose
dispersion effect of the molecule and thus affects inhibitory
activity. Descriptor values appearing in the 2D-QSAR models
of the training and test set molecules are shown Table 5. In
the three isomeric compounds 24, 25, and 26, because of the
complexity of SAR, the inhibitory activity was not explained
by the effect that depended on the relative position of the
substituents in the best 2D-QSAR model. However, the
varied activities for these kinds of compounds were very
well-explained in the MFA analysis in which the molecular
field is characterized by respective property values in the
pre-determined grid points of three dimensional space, each
of which is responsible for individual intra- or intermole-
cular interactions. 

Molecular Field Analysis. The MFA was developed from
84 compounds (60 arylazoenamines in the training and test
set and 24 benzimidazoles in the prediction set) using pre-
aligned structures at 1.5 Å grid spacing. In the process of

developing quantitative relationships between anti-BVDV
activity and continuous distribution of energy fields such as
electrostatic and hydrophobic effects, the results depended
strongly on the molecular alignment. For molecular align-
ment, the spatial group of active fragments was applied to
molecules with diverse structures, which unfortunately
resulted in much more ambiguity for 10 acridines. This type
of alignment used in the study is adequate for a data set that
involves structurally closely related molecules. However,
the 10 acridines, which are related to the presence and nature
of the tricyclic system and the amino group in the prediction
set, do not have a structural fragment or shape similar to the
other molecules in the current study. Thus, the higher
number of independent variables may create ambiguities in
the extraction of the chemical information relevant to the
MFA. All the significant structural diversity is necessary in
such regions to compare possible active regions in the mole-
cules to determine the inhibitory activity of the molecules. In
an attempt to further prove the impact of basic aromatic
analogues on anti-BVDV activity, four structurally different
2-phenylbenzylimidazole derivatives (F-I subgroups in Table
2) were validated in the MFA together with the original set
of arylazoenamines. Therefore, the MFA model would be
much more significant. 

The QSAR equation of the MFA model involved eight
field descriptors, in which the steric (CH3) and electrostatic
(H+) field descriptors essentially determined the changes in
the inhibitory activity, and the constant consisted of nine
total parameters. The equation generated by the MFA model
using G/PLS regression method is given by: 

pEC50 = 4.697 + 1.071(H+/661, Ele_9_11_7) + 0.3324(H+/
165, Ele_12_7_3) + 1.006(H+/244, Ele_14_9_4) − 
0.3813(H+/245, Ele_14_9_5) + 0.9012(CH3/262, 
VdW_3_7_2) − 0.6232(CH3/317, VdW_4_8_7) − 
0.5888(CH3/355, VdW_5_7_9) − 0.5342(CH3/401, 
VdW_6_7_12) (2)

ntraining = 47, r = 0.919, r2 = 0.844, r2
adj = 0.830, r2

CV = 0.722,
RMS = 0.189; ntest = 13, r2

pred = 0.348, PRESStest = 1.005,
SDEPtest = 0.278, SPRESS,test = 0.579; npred = 24, r2

test = 0.551,
PRESSpred = 7.625, SDEPpred = 0.564 , SPRESS,pred = 0.738 

The following MFA model could explain 83.0% of variance
and predict 72.2% of LOO internal variance. The model
showed good internal validation (r2

CV > 0.5), but the predic-
tive power of the MFA model for external validation on the
test compound and prediction set was not better than the 2D-
QSAR model. Tables 1 and 2 show the predicted inhibitory
activity values and validated values obtained from the MFA
model for the training and test set and prediction set mole-
cules, respectively. The graph of actual versus predicted
pEC50 values of anti-BVDV activity of the total data set for
both the MFA model and the 2D-QSAR model is also shown
in Figure 3. In comparing and analyzing the predictive
power the 2D-QSAR model is better than the MFA model
considering external validation (prediction set) whereas the
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letter is better in internal validation (test set) than the former.
Some potential limitations of the MFA model would be
arising from the structural diversity in the validation set and
then pre-aligned molecules are less likely to a good align-
ment for the analysis of molecular fields. Furthermore, the
MFA model is the number of field descriptors dependent
tends to have higher changes in the inhibition activity than
2D-QSAR model for an identical molecule validated. In the
MFA model, the descriptors H+/x and Ele_a_b_c represent
the electrostatic field created by a molecule at the rectan-
gular points a, b, c in its number x respectively. The number
associated with the energy grids represents the location in
the 3D-grid around the molecule to specify their presence at
special positions, but not every grid point can be so express-
ed. The 3D-isosurface as a shape field for one set of energy
grids could give insight into what modifications to the mole-
cules would enhance inhibitory activity. A positive coeffi-
cient on the electrostatic descriptor indicates a region favor-
able for an electropositive group (electron donating group),
while a negative coefficient indicates an electronegative group
(electron withdrawing group) is required at the position. For
instance, the term of 1.071(H+/661, Ele_9_11_7) has a positive
coefficient in Eq. (2), which means at this position an elect-
ron donating group (NH2 or CH3) will increase the activity.
The term of 0.9012(CH3/262, VdW_3_7_2) has a positive
coefficient, which means that at this position a large group

will increase activity; on the other hand, terms with negative
coefficients mean at this position, a small group will increase
the activity. The blue isosurface represents a contour for
those points that correspond to a given positive contribution
of the electrostatic descriptors (H+ probe); the red surface, on
the other hand, represents those contour points correspond-
ing to a given negative contribution. Consequently, the terms
H+/661, H+/165, and H+/244 are distinguished in the variable
of the blue isosurface from H+/245 of red isosurface with
respect to their activity. 

From Eq. (2) above, larger positive values of pEC50 value
indicate more active compounds. To increase the activity (a
larger positive value of predicted activity), a molecule should
have a functional group on the isosurface that shows electro-
static potential with a positive coefficient (the blue area), and
on the isosurface that shows negative electrostatic potential
with a negative coefficient (the red area). As shown in Figure
4, when we compare the compound 30 with the highest
activity and 22 with the compound with lowest activity, we
notice that this can be achieved by strategically adding polar
groups bound on an Aryl substituent in the electrostatic
interactions in order to increase the inhibitory activity. For
example, the 3D-isosurface of the coefficients of electro-
static interaction in the most active compound (Fig. 4(b))
show that the red area is visible the middle and the top right,
while the blue area is visible in between the red zone and the
bottom of the aligned molecule. Electronegative atoms (e.g.

-NO2) adjacent to the π system in compound 30 strongly
deactivate the aromatic ring by decreasing electron density
on the ring though a resonance-withdrawing effect, making
it less nucleophilic in the blue area (negative charge unfavor-
able). However, compound 22 has a conjugated π-bond and
the highest π-electron density in the blue area compared to
compound 30; this produces lower inhibitory activity. Also,
the relative position of halogen substituents bound to the
aromatic ring with π-bonds may affect the activity differently
because they both induce electronegativity and resonance
donation (lone pair donating). The inductive effect lowers
the reactivity but the resonance effect controls the stability
of the intermediates. With respect to the position of the
halogen substituents on the benzyl group, meta-, para-, and

Figure 3. Graphs of actual versus predicted anti-BVDV activity
for all three data sets for training, internal test, and external
prediction set molecules based on both (a) 2D-QSAR model and
(b) MFA model. 

Figure 4. The 3D view of MFA model coefficients of electrostatic
interactions in the molecules of the least active compound 22 and
most active compound 30 is shown. The red area shows the negative
coefficient and the blue area shows the positive coefficient for (a)
compound 22 (4.000 in pEC50) and (b) compound 30 (6.097 in
pEC50). 
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ortho-substitutions are preferred (compound 24, 25, and 26,
respectively) for improvements of activity, in particular
chlorine and bromine in position 3, which is as also shown in
Figure 5. It is always difficult to determine the effect of elec-
trophilic aromatic substituents on electrostatic interaction
and to predict the impact on anti-BVDV activity. The van
der Waals interactions in the two positions have different
effects on the activity: the 1-naphethyl analogue 39 had
excellent activity compared the arylazotetrahydropyridines
C compounds 22 and 39, but the arylazomethylenepyridines
D compounds 41 and 56, where the methyl group on the R-
group was replaced by a methyl phenyl ring, had reduced
activity that agreed very well with the 2D-QSAR model.
Figure 6 represents the 3D-isosurface of model coefficients
of van der Waals interactions with two colors: green indicates
a positive coefficient and yellow indicate a negative coeffi-
cient. To increase activity as predicted by Eq. (2), the mole-
cule should have strong van der Waals attraction in the green
area and weak van der Waals attraction in the yellow area. In
a comparison of compounds 41 and 56, replacing the methyl
group with a benzyl group had a stronger van der Waals
attraction in the yellow area, which resulted in reduced
activity (Fig. 6(c)). In contrast, exchanging the phenyl with
1-naphethyl in an analogue (39) gave stronger hydrophobic
attraction in the green area and enhanced activity (Fig. 6(b)).
The MFA model obtained from this study is statically
reliable and would be useful for designing potent inhibitors
of BVDV NS5B RdRp polymerase, and together with the
2D-QSAR model would provide information to characterize
and differentiate their binding sites and describe substitu-
tional requirements for favorable quantitative interaction.

Extended Prediction Set Analysis. To further evaluate
the availability of the QSAR models, we used a difficult ex-
ternal prediction set with an initial series of training and test
sets to validate the model (Table 2). Modified substituents of
the acridine scaffold (compounds 61 to 70) that may result in
improved activity can be explained with particular mole-
cular descriptors that indicate anti-BVDV activity. When the

chain is branched on hydroxyalkyl derivatives 62 to 64, a
strikingly different effect, depending on their degree of branch-
ing, might reveal Jurs TASA values. However, dramatic
changes in antiviral activity were not observed. The other
effect of introducing a heterocyclic ring on the substituents
for compounds 66 to 70 was to reduce the activity as com-
pared with compound 61. Our 2D-QSAR model predicted
experimental data well, except for molecule 61. Moreover,
where the length of the methylene linker increased (com-
pounds 67 and 68), inhibition activity decreased, total hydro-
phobic surface increased as Jurs TASA, and dipole moment
Y decreased. The activities of molecules 62, 64, 65, 66, and
67 had a side chain terminated with an oxygenated group
and were generally observed with higher values (EC50 in the
range 0.6-2 µM); the 2D-QSAR model was in good corre-
lation with biological data as a consequence of minor
changes in their range of activities. 

In the case of 2-phenylbenzimidazole derivatives, the main
scaffold is a hydrophobic aromatic ring of benzimidazole
moiety, and nitrogen atoms of the azole ring are involved in
H-bond formation. Modification of the substitution pattern
on 2-phenylbenzimidazole derivatives of structure H resulted
in introducing substituents into 5-CF3 with higher activity;
additional analogues I in which methyl was replaced in
position Z had similar or slightly reduced antiviral activities
(compounds 32, 42, 90 corresponding to 33, 43, 91, Table
2). Both compounds 42 and 43 were more active than their
non-substituted analogues in position 5 (compounds 32 and
33 respectively) because an asymmetric polar group (-CF3)
with a high dipole Y value has more inhibitory activity. Thus
compounds 90 and 91 which have hydrophobic substituents

Figure 5. Molecules 24(a), 25(b), and 26(c) within the 3D-is-
osurface of the electrostatic interaction, where the introduction of
chlorine substituent bound on benzyl group has increased negative
electrostatic interaction. Also, the inhibitory activity and their
relative positions in space with respect to each other plays an
important role in the inhibition of BVDV RdRp.

Figure 6. The 3D view of model coefficients of van der Waals
interactions for pre-aligned compounds 22 vs. 39 (a, b) and 41 vs.
56 (c, d) is shown with two colors: green indicates positive
coefficients and yellow indicates negative coefficients. Compound
56 whose phenyl ring is closer to large yellow contour led to
decreased activity (c), but compound 39 of bulky substituent is
green region near that is beneficial to the inhibitory activity (b). 



Molecular Modeling of Small Molecules as BVDV NS5B RdRp Inhibitors  Bull. Korean Chem. Soc. 2013, Vol. 34, No. 3     849

in position Z, have negative coefficients on their JursTASA
terms and hence, according to Eq. (1), less inhibitory activity
than the corresponding hydrogen congeners. These molecular
characters such as the dipole moment represent global
polarities in a molecule that may be of critical value in the
anti-BVDV activity of this class of compounds, and their
proven activity against BVDV can be arranged in the follow-
ing order of decreasing dipole Y values: 84 > 81 > 76. Indeed,
compounds 76, 77, 81, 82, 84, and 85 bear a basic head on
the acyl moiety and exhibit potent activity against BVDV. In
such cases, the effect of the groups on the compounds was
assessed with the MFA model. The MFA electrostatic 3D-
isosurface for those compounds is shown in Figure 7. A red
contour region was found around the benzimidazole moiety
where electronegative groups could have a positive influence
on the inhibitory activity. Also, large blue regions near the 2-
phenyl analogues indicate that electropositive substituents
would enhance the activity. This may perhaps explain the
fact that these compounds having both a carbonyl group and
a basic amine group on the 2-pheyl substituent were a better
match in the blue regions than only acyl moiety, and are
predicted to be more active in compounds 74 and 75 com-
pared to compounds 76 and 77. That is also consistent with
the important fact that the existence of a polar group at the
R1 position and basic groups at the R2 position on 2-phenyl-
benzimidazole derivatives of structure H increase activity.

Conclusions

In an attempt to understand structural requirements for
antiviral activity, we studied the particular characteristics
depending on the structure that may affect the inhibitory
activity of these anti-BVDV compounds. This was corrobo-
rated using complementary 2D-QSAR and MFA models to
select and characterize chemical features that may be re-
sponsible for the activity of the inhibitors. Interestingly, 2D-
QSAR models have been shown to be an important concept
which acts as a common model of physical and chemical
properties that could possibly explain the increased activity
in various classes of structurally unrelated molecules. After
identification of a major factor of action against BVDV, we

also explored whether changes, different from the positions
may explain the antiviral activity and would stabilize or
disrupt the potential interaction of the inhibitors and BVDV
NS5B RdRp polymerase. The variation of activity caused by
those changes may be quantified with the MFA model.
Overall, there appears to be a relatively good correlation
between the actual and predicted activities of the selected
compounds with different core structures and basic aromatic
class molecules when combined with the methods. That also
showed trends similar to SAR analysis and the pharmaco-
phore prediction models as reported by M. Tonelli et al. Our
MFA models have a possible reliability problem related to
the diversity of the data set which might cause prediction
error; we believe, however, that we can avoid that limitation
by predicting more biological data for model training by
combining these models. The QSAR models should be used
for screening a large library of small molecules for potential
inhibitors of BVDV replication; those models will be useful
in attempting to identify features that enhance the inhibitory
activity while reducing one or more undesirable effects (e.g.

cytotoxicity), resulting in increased selectivity. 
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