DOI QR코드

DOI QR Code

An Efficient Synthesis of Substituted Furans by Cupric Halide-Mediated Intramolecular Halocyclization of 2-(1-Alkynyl)-2-alken-1-ones

  • Fu, Wei-Jun (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Xu, Feng-Juan (Chemistry Department, Zhengzhou University) ;
  • Guo, Wen-Bo (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Zhu, Mei (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Xu, Chen (College of Chemistry and Chemical Engineering, Luoyang Normal University)
  • Received : 2012.10.16
  • Accepted : 2012.12.25
  • Published : 2013.03.20

Abstract

An efficient synthesis of 3-halofurans by the intramolecular cyclization of 2-(1-alkynyl)-2-alken-1-ones with cupric halide has been developed. A broad range of 3-chloro- and 3-bromofuran derivatives could be obtained in the present method in moderate to good yields. The 3-halofuran derivatives are potential synthetic intermediates for amplification of molecular complexity.

Keywords

References

  1. Katritsky, A. R. Advances in Heterocyclic Chemistry; Academic Press: New York, 1982.
  2. Sargent, M. V.; Dean F. M. In Comprehensive Heterocyclic Chemistry; Katrizky, A. R., Rees, C. W., Eds.; Pergamon Press: New York, 1984; Vol. 4, pp 599-656.
  3. Bird, C. W.; Cheeseman, G. W. H. Comprehensive Organic Chemistry; Pergamon: New York, 1984.
  4. Nakanishi, K. Natural Products Chemistry; Kodansha: Tokyo, 1974.
  5. Vernin, G. The Chemistry of Heterocyclic Flavouring and Aroma Compounds; Ellis Harwood: Chichester, U. K., 1982.
  6. Kubo, I.; Lee, Y. W.; Nakanishi, K.; Chapya, A. J. Chem. Soc., Chem. Commun. 1976, 949.
  7. Schulte, G.; Schener, P. J.; McConnel, O. Helv. Chim. Acta 1980, 63, 2159. https://doi.org/10.1002/hlca.19800630805
  8. Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 2004, 104, 2667. https://doi.org/10.1021/cr020101a
  9. Lin, S.-Y.; Chen, C.-L.; Lee, Y.-J. J. Org. Chem. 2003, 68, 2968. https://doi.org/10.1021/jo020653t
  10. Bach, T.; Kruger, L. Eur. J. Org. Chem. 1999, 2045.
  11. Alvarez-lbarra, C.; Quiroga, M. L.; Toledano, E. Tetrahedron 1996, 52, 4065. https://doi.org/10.1016/S0040-4020(96)00069-5
  12. Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861. https://doi.org/10.1021/jo0266339
  13. Padwa, A.; Crawford, K. R.; Rashatasakhon, P.; Rose, M. J. Org. Chem. 2003, 68, 2609. https://doi.org/10.1021/jo026757l
  14. Crawford, K. R.; Padwa, A. Tetrahedron Lett. 2002, 43, 7365. https://doi.org/10.1016/S0040-4039(02)01725-2
  15. Arroyo, Y.; Rodriguez, J. F.; Sanz-Tejedor, M. A.; Santos, M. Tetrahedron Lett. 2002, 43, 9129. https://doi.org/10.1016/S0040-4039(02)02277-3
  16. Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937. https://doi.org/10.1021/cr100214d
  17. Yamamoto, Y.; Gridnev, I. D.; Patil, N. T.; Jin, T. Chem. Commun. 2009, 5075.
  18. Chen, Z.-W.; Huang, G.; Jiang, H.-F.; Huang, H.-W.; Pan, X.-Y. J. Org. Chem. 2011, 76, 1134. https://doi.org/10.1021/jo1023987
  19. Xie, Y.-X.; Liu, X.-Y.; Wu, L.-Y.; Han, Y.; Zhao, L.-B.; Fan, M.- J.; Liang, Y.-M. Eur. J. Org. Chem. 2008, 1013.
  20. Sniady, A.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2005, 7, 1769. https://doi.org/10.1021/ol050372i
  21. Sniady, A.; Morreale, M. S.; Wheeler, K. A.; Dembinski, R. Eur. J. Org. Chem. 2008, 3449.
  22. Aillaud, I.; Bossharth, E.; Conreaux, D.; Desbordes, P.; Monteiro, N.; Balme, G. Org. Lett. 2006, 8, 1113. https://doi.org/10.1021/ol053048w
  23. Zhou, H.; Yao, J.; Liu, G. Tetrahedron Lett. 2008, 49, 226. https://doi.org/10.1016/j.tetlet.2007.11.092
  24. Yang, F.; Jin, T.; Bao, M.; Yamamoto, Y. Chem. Commun. 2011, 4541.
  25. Arimitsu, S.; Jacobsen, J. M.; Hammond, G. B. J. Org. Chem. 2008, 73, 2886. https://doi.org/10.1021/jo800088y
  26. Karpov, A. S.; Merkul, E.; Oeser, T.; Muller, T. J. J. Eur. J. Org. Chem. 2006, 2991.
  27. Thongsornkleeb, C.; Rabten, W.; Bunrit, A.; Tummatorn, J.; Ruchirawat, S. Tetrahedron Lett. 2012, 53, 6615. https://doi.org/10.1016/j.tetlet.2012.09.124
  28. Liu, Y. H.; Zhou, S. B. Org. Lett. 2005, 7, 4609. https://doi.org/10.1021/ol051659i
  29. Yao, T.; Zhang, X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679. https://doi.org/10.1021/jo0510585
  30. Krafft, G. A.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1981, 103, 5459. https://doi.org/10.1021/ja00408a030
  31. Steinmann, J. G.; Phillips, J. H.; Sanders, W. J.; Kiessling, L. L. Org. Lett. 2001, 3, 3557. https://doi.org/10.1021/ol016674b
  32. Mellegaard, S. R.; Tunge, J. A. J. Org. Chem. 2004, 69, 8979. https://doi.org/10.1021/jo048460o
  33. Ma, S.; Wu, S. J. Org. Chem. 1999, 64, 9314. https://doi.org/10.1021/jo991574t
  34. Liang, Y.; Tang, S.; Zhang, X.; Mao, L.; Xie, Y.; Li, J. Org. Lett. 2006, 8, 3017. https://doi.org/10.1021/ol060908f
  35. Ma, S.; Xie, H. Tetrahedron 2005, 61, 251. https://doi.org/10.1016/j.tet.2004.10.050
  36. Ma, S.; Wu, S. Chem. Commun. 2001, 441.
  37. Shen, Z.; Lu, X.-Y. Adv. Synth. Catal. 2009, 351, 3107. https://doi.org/10.1002/adsc.200900609
  38. Lu, W.-D.; Wu, M.-J. Tetrahedron 2007, 63, 356. https://doi.org/10.1016/j.tet.2006.10.068
  39. Barancelli, D. A.; Schumacher, R. F.; Leite, M. R.; Zeni, G. Eur. J. Org. Chem. 2011, 6713.
  40. Yu, F.; Lian, X.; Zhao, J.; Yu, Y.; Ma, S. J. Org. Chem. 2009, 74, 1130. https://doi.org/10.1021/jo802051r
  41. Peng, A.-Y.; Hao, F.; Li, B.; Wang, Z.; Du, Y. J. Org. Chem. 2008, 73, 9012. https://doi.org/10.1021/jo801842g
  42. Fei, N.; Yin, H.; Wang, S.; Wang, H.; Yao, Z.-J. Org. Lett. 2011, 13, 4208. https://doi.org/10.1021/ol201542h
  43. Zhu, M.; Fu, W.; Xu, C.; Zou, G.; Wang, Z.; Ji, B. Eur. J. Org. Chem. 2012, 4609.
  44. Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164. https://doi.org/10.1021/ja0466964
  45. Patil, N. T.; Wu, H.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4531. https://doi.org/10.1021/jo050191u
  46. Oh, C. H.; Reddy, V. R.; Kim, A.; Rhim, C. Y. Tetrahedron Lett. 2006, 47, 5307. https://doi.org/10.1016/j.tetlet.2006.05.119
  47. Xiao, Y.; Zhang, J. Angew. Chem. Int. Ed. 2008, 47, 1903. https://doi.org/10.1002/anie.200704531
  48. Xiao, Y.; Zhang, J. Adv. Synth. Catal. 2009, 351, 617. https://doi.org/10.1002/adsc.200800715
  49. Xiao, Y.; Zhang, J. Chem. Commun. 2009, 3594.
  50. Liu, F.; Zhang, J. Angew. Chem. Int. Ed. 2009, 48, 5505. https://doi.org/10.1002/anie.200901299
  51. Liu, F.; Qian, D.; Li, L.; Zhao, X.; Zhang, J. Angew. Chem. Int. Ed. 2010, 49, 6669. https://doi.org/10.1002/anie.201003136
  52. Gao, H.; Zhao, X.; Yu, Y.; Zhang, J. Chem. Eur. J. 2010, 16, 456. https://doi.org/10.1002/chem.200901813
  53. Gao, H.; Wu, X.; Zhang, J. Chem. Commun. 2010, 46, 8764. https://doi.org/10.1039/c0cc02778b
  54. Zhao, W.; Zhang, J. Chem. Commun. 2010, 46, 4384. https://doi.org/10.1039/c000883d
  55. Zhao, W.; Zhang, J. Chem. Commun. 2010, 46, 7816. https://doi.org/10.1039/c0cc02382e
  56. Gao, H.; Wu, X.; Zhang, J. Chem. Eur. J. 2011, 17, 2838. https://doi.org/10.1002/chem.201003363
  57. Gao, H.; Zhang, J. Chem. Eur. J. 2012, 18, 2777. https://doi.org/10.1002/chem.201103924
  58. Zhu, M.; Fu, W.; Zou, G.; Xu, C.; Deng, D.; Ji, B. J. Fluorine Chem. 2012, 135, 195. https://doi.org/10.1016/j.jfluchem.2011.11.002
  59. Zhu, M.; Fu, W.; Zou, G. Appl. Organomet. Chem. 2010, 24, 499. https://doi.org/10.1002/aoc.1648
  60. Fu, W.; Guo, W.; Zou, G.; Xu, C. J. Fluorine Chem. 2012, 140, 88. https://doi.org/10.1016/j.jfluchem.2012.05.009
  61. C.; Zou, G. Bull. Korean Chem. Soc. 2012, 33, 1325. https://doi.org/10.5012/bkcs.2012.33.4.1325
  62. Zhu, M.; Fu, W.; Xu, C.; Zou, G. Bull. Korean Chem. Soc. 2012, 33, 43. https://doi.org/10.5012/bkcs.2012.33.1.43

Cited by

  1. ChemInform Abstract: An Efficient Synthesis of Substituted Furans by Cupric Halide-Mediated Intramolecular Halocyclization of 2-(1-Alkynyl)-2-alken-1-ones. vol.44, pp.40, 2013, https://doi.org/10.1002/chin.201340099
  2. Computational study on the mechanism of transition metal-catalyzed formation of highly substituted furo [3,4-d] [1,2] oxazines vol.17, pp.01, 2018, https://doi.org/10.1142/S0219633618500116
  3. Paracyclophane-based Silver Phosphates as Catalysts for Enantioselective Cycloisomerization/Addition Reactions: Synthesis of Bicyclic Furans vol.360, pp.17, 2018, https://doi.org/10.1002/adsc.201800587
  4. Gold-Catalyzed Concomitant [3 + 3] Cycloaddition/Cascade Heterocyclization of Enynones/Enynals with Azides Leading to Furanotriazines vol.81, pp.4, 2013, https://doi.org/10.1021/acs.joc.5b02567
  5. Silver(I)-Mediated Cascade Reaction of 2-(1-Alkynyl)-2-alken-1-ones with 2-Naphthols vol.22, pp.15, 2013, https://doi.org/10.1021/acs.orglett.0c01803