DOI QR코드

DOI QR Code

Electron Beam Coherency Determined from Interferograms of Carbon Nanotubes

  • Cho, B. (Korea Research Institute of Standards and Science) ;
  • Oshima, C. (Department of Applied Physics, Waseda University)
  • Received : 2012.12.06
  • Accepted : 2012.12.26
  • Published : 2013.03.20

Abstract

A field emission projection microscope was constructed to investigate the atomic and chemical-bonding structure of molecules using electron in-line holography. Fringes of carbon nanotube images were found to be interferograms equivalent to those created by the electron biprism in conventional electron microscopy. By exploiting carbon nanotubes as the filament of the electron biprism, we measured the transverse coherence length of the electron beam from tungsten field emitters. The measurements revealed that a partially coherent electron-beam was emitted from a finite area.

Keywords

References

  1. Tonomura, A. Rev. Mod. Phys. 1987, 59, 639. https://doi.org/10.1103/RevModPhys.59.639
  2. Spence J. C. H. Experimental High-Resolution Electron Microscopy; Oxford University Press: 1988.
  3. Garcia, N.; Rohrer, H. J. Phys.: Condens. Matter 1989, 1, 3737. https://doi.org/10.1088/0953-8984/1/23/022
  4. Missiroli, G. F.; Pozzi, G.; Valdre, U. J. Phys. E 1999, 14, 649.
  5. Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambrige University Press.
  6. Fink, H. W.; Schmid, H.; Kreuzer, H. J.; Wierzbicki, A. Phys. Rev. Lett. 1991, 67, 1543. https://doi.org/10.1103/PhysRevLett.67.1543
  7. Spence, J. C. H.; Qian, W.; Silverman, M. P. J. Vac. Technol. A 1994, 12, 542. https://doi.org/10.1116/1.579166
  8. Fransen, M. J.; Damen, E. P. N.; Schiller, C.; van Rooy, T. L.; Groen, H. B.; Kruit, P. App. Surf. Sci. 1996, 94/95, 107. https://doi.org/10.1016/0169-4332(95)00358-4
  9. de Jonge, N.; Lamy, Y.; Schoots, K.; Ooseterkamp, T. H. Nature 2002, 420, 393. https://doi.org/10.1038/nature01233
  10. Horiuchi, S. Fundamentals of High-resolution Transmission Electron Microscopy; Amsterdam: North-Holland, 1994.
  11. Cho, B.; Ichimura, T.; Shimizu, R.; Oshima, C. Phys. Rev. Lett. 2004, 92, 246103. https://doi.org/10.1103/PhysRevLett.92.246103
  12. Cho, B.; Ogawa, T.; Ichimura, T.; Ichinokawa, T., Amakusa, T.; Oshima, C. Rev. Sci. Instrum. 2004, 75, 3091. https://doi.org/10.1063/1.1790581
  13. Prigent, M.; Morin, P. J. Microscopy 2000, 199, 197. https://doi.org/10.1046/j.1365-2818.2000.00714.x
  14. Pozzi, G. Optik 1987, 77, 69.
  15. Pozzi, G.; Matteucci, G.; Carpenter, R. W. Eleventh International Congress on Electron Microscopy, Kyoto 1984, 1, 315.
  16. Oshima, C.; Mastuda, K.; Kona, T.; Mogami, Y.; Komaki, M.; Murata, Y.; Yamashita, M.; Kuzumaki, T.; Horiike, Y. Phys. Rev. Lett. 2002, 88, 38301. https://doi.org/10.1103/PhysRevLett.88.038301
  17. Meaden, G. T. Electrical Resistance of Metals; Heywood Books, London, 1966.
  18. Jeandupeux, O.; Burgi, L.; Hirstein, A.; Brune, H.; Kern, K. Phys. Rev. B 1999, 59, 15926. https://doi.org/10.1103/PhysRevB.59.15926
  19. Kiesel, H.; Renz, A.; Hasselbach, F. Nature 2002, 418, 392. https://doi.org/10.1038/nature00911

Cited by

  1. Tip-based source of femtosecond electron pulses at 30 keV vol.115, pp.9, 2013, https://doi.org/10.1063/1.4867185
  2. Observing the Quantum Wave Nature of Free Electrons through Spontaneous Emission vol.123, pp.6, 2013, https://doi.org/10.1103/physrevlett.123.060401
  3. Vortex particles in axially symmetric fields and applications of the quantum Busch theorem vol.23, pp.3, 2013, https://doi.org/10.1088/1367-2630/abeacc