DOI QR코드

DOI QR Code

The quantitative analysis of combustive gases on fire by remote passive open path FT-IR spectrometer

Passive open-path FT-IR spectrometer를 사용한 원거리 화재 연소 가스 정량 분석

  • Cho, Nam Wook (Korea Institute of Construction Technology) ;
  • Cho, Won Bo (College of Pharmacy, Dongduck Women's University) ;
  • Kim, Hyo Jin (College of Pharmacy, Dongduck Women's University)
  • Received : 2012.09.19
  • Accepted : 2013.03.29
  • Published : 2013.04.25

Abstract

It was studied to analyze the $CO_2$, CO, $SO_2$ standard gases of combustion gases by the open path FT-IR spectrometer with passive mode for remote analysis of air pollutant and volcano gases without IR lamp. As result, it was confirmed to have good linearity with more than 0.9 as correlation coefficients on the calibration curve of $CO_2$, CO concentration by MLR method. But in the case of $SO_2$, because the correlation coefficients were 0.88, the linearity could be lower. Finally, the concentration of three gases was predicted on in-site fire experiment under the condition of quantitative analysis. It could measure high $CO_2$ concentration as predicted result, but didn't measure the CO and $SO_2$. According to the result, it was possible to measure the combustion gases to long distance by only open path FT-IR spectrometer without infrared lamp.

본 연구에서는 대기오염 및 화산활동에 의한 분출가스의 원거리 가스검출에 제한적으로 사용된 개방형 푸리에 변환 분광 분석기(open path FT-IR spectrometer)를 사용하여 적외선광원을 사용하지 않는 passive mode로 $CO_2$, CO, $SO_2$에 대한 정량 분석을 시도하였다. 표준가스를 이용하여 제작된 적외선흡수 스펙트럼으로 $CO_2$, CO, $SO_2$ 다중 회귀 곡선(MLR)을 사용한 농도 별 검량선 작업 결과, $CO_2$, CO는 결정 계수가 0.90 이상으로 선형성이 좋았으나, $SO_2$는 0.88로 비교적 낮은 선형성을 확인할 수 있었다. 실제 화재 실험을 통하여 3가지 가스에 대해서 측정한 결과 $CO_2$는 높은 농도를 확인하였으나, CO, $SO_2$는 확인되지 않았다. 이 결과를 통해서 적외선 광원 없이 개방형 푸리에 변환 분광 분석기를 활용하여 화재시 배출되는 가스의 원거리측정이 가능함을 확인하였다.

Keywords

References

  1. J. W. Childers., E. L. Thompson., D. B. Harris, Atmos. Env., 35, 1923-1936 (2001). https://doi.org/10.1016/S1352-2310(00)00545-8
  2. T. E. L. Smith, M. J. Wooster1, M. Tattaris1 and D. W. T. Griffith, Atmos. Meas. Tech., 4, 97-116 (2011). https://doi.org/10.5194/amt-4-97-2011
  3. B. K. Hart, R. J. Berry and P. R. Griffiths, Environ. Sci. Technol., 34, 1346-1351 (2000). https://doi.org/10.1021/es990439v
  4. A. Beil, R. Daum, G. Matz and R. Harig, Herausgeber, Proceedings of SPIE., 3493, 32-43 (1998).
  5. D. Fu, K. A. Walker, K. Sung, C. D. Boone, M.-A. Soucy and P. F. Bernath, Quant. Spectrosc. Ra., 103, 362-370 (2007). https://doi.org/10.1016/j.jqsrt.2006.05.006
  6. P. R. Griffiths, S. Limin and A. B. Leytem., Anal Bioanal Chem., 393, 45-50 (2009). https://doi.org/10.1007/s00216-008-2429-6
  7. Z. Bacsik and J. Mink, Appl. Spectrosc. Rev., 39, 295-363 (2004). https://doi.org/10.1081/ASR-200030192
  8. D. W. T. Griffith, R. Leuning, O. T. Denmead and I. M. Jamie, Atmos. Environ., 36, 1833-1842 (2002). https://doi.org/10.1016/S1352-2310(02)00139-5
  9. J. G. Goode, R. J. Yokelson, D. E. Ward, R. A. Susott, R. E. Babbitt, A. Davies and W. Min Hao, J. Geophys. Res.-Atmos., 105(D17), 22147-22166 (2000). https://doi.org/10.1029/2000JD900287
  10. T. M. Gerlach, K. A. McGee, A. J. Sutton and T. Elias, Hawaii, Geophys. Res. Lett., 25, 2675-2678 (1998). https://doi.org/10.1029/98GL02030