
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.2, APRIL, 2013 http://dx.doi.org/10.5573/JSTS.2013.13.2.157

Manuscript received Aug. 23, 2012; accepted Nov. 29, 2012.

Both authors are with Inter-university Semiconductor Research Center,

Department of Electrical Engineering, Seoul National University, Korea.

E-mail : eskim@capp.snu.ac.kr

A novel hardware design for SIFT generation with

reduced memory requirement

Eung Sup Kim and Hyuk-Jae Lee

Abstract—Scale Invariant Feature Transform (SIFT)

generates image features widely used to match objects

in different images. Previous work on hardware-

based SIFT implementation requires excessive

internal memory and hardware logic [1]. In this paper,

a new hardware organization is proposed to

implement SIFT with less memory and hardware cost

than the previous work. To this end, a parallel

Gaussian filter bank is adopted to eliminate the

buffers that store intermediate results because

parallel operations allow all intermediate results

available at the same time. Furthermore, the

processing order is changed from the raster-scan

order to the block-by-block order so that the line

buffer size storing the source image is also reduced.

These techniques trade the reduction of memory size

with a slight increase of the execution time and

external memory bandwidth. As a result, the memory

size is reduced by 94.4%. The proposed hardware for

SIFT implementation includes the Descriptor

generation block, which is omitted in the previous

work [1]. The addition of the hardwired descriptor

generation improves the computation speed by about

30 times when compared with the previous work.

Index Terms—SIFT, computer vision, hardware

implementation, memory reduction, Gaussian filter

bank

I. INTRODUCTION

SIFT (Scale-Invariant Feature Transform) generates

one of the popular local image features widely used to

match objects in different images [2]. Because of its

outstanding performance, it is used for various

applications such as object recognition, image stitching,

and robot navigation. However, complex computation

and excessive memory access make it difficult to process

SIFT operation for a large size video in real time. To

speed up the SIFT operation, a number of previous

research efforts have been made [3-5]. Among them, one

presents a hardware-based implementation that achieves

a real-time SIFT operation of QVGA-sized (320x240)

video at the rate of 30 frames per second [1]. Although

this work in [1] enables a real-time SIFT operation, the

hardware cost is very large because intermediate results

are stored in internal memory inside a chip. In a PC

environment, it is an efficient approach to speed up the

computation with an increased memory requirement

because a PC has sufficient memory but a limited

computing power for SIFT computation. However, in a

customized ASIC or SoC (System-on-Chip), the use of a

large internal memory significantly increases the cost of

the chip.

This paper proposes a new hardware architecture and

organization for the SIFT algorithm. In order to reduce

the hardware cost, the proposed design attempts to

reduce the internal buffer. To this end, the new design

adopts a parallel Gaussian filter bank, which performs

Gaussian filtering operations in parallel with various

scales. The use of parallel Gaussian filters reduces the

number of line buffers that temporarily store the

intermediate results. For an additional reduction of the

158 EUNG SUP KIM et al : A NOVEL HARDWARE DESIGN FOR SIFT GENERATION WITH REDUCED MEMORY REQUIREMENT

internal memory size, the input image is partitioned to be

stored in a buffer. As a result, the buffer size to store the

input image is also reduced because only the partitioned

sub-image needs to be stored in the buffer. The entire

procedure for the SIFT computation is implemented in

hardware and the computation speed is increased by

about 30 times when compared with the previous work

[1].

The rest part of this paper is organized as follows.

Section II briefly introduces the SIFT algorithm and

Section III presents a previous hardware implementation

for the SIFT algorithm with analysis on the computation

speed and memory requirement. Section IV proposes a

new hardware architecture that attempts to reduce the

hardware cost and to speed up computation time and

Section V describes a hardware organization for further

reductions of the hardware cost and memory access. In

Section VI, the efficiency of the proposed hardware

design is evaluated and conclusions are presented in

Section VII.

II. SCALE-INVARIANT FEATURE TRANSFORM

(SIFT)

This section briefly introduces the SIFT algorithm. Fig.

1 shows the computation flow of the SIFT algorithm. The

procedure is composed of two main steps: keypoint

detection and descriptor generation. In the first step, the

input image is scanned to find the locations of pixels

with special characteristics, called keypoints. In the

second step, a feature is created for characterizing each

keypoint found in the first step. This feature consists of

the histograms of gradients around the keypoint. The

keypoint detection step is composed of three substeps:

scale-space image generation, local extrema detection,

and keypoint detection. The descriptor generation step

consists of orientation assignment and descriptor

generation substeps. For self-containment, these substeps

are briefly explained next and further details are

available in [2].

1. Scale-space Image Generation

In this step, Gaussian-blurred images are generated by

filtering an input image with Gaussian filters. The

convolution operation described below produces a

Gaussian-blurred image, Li(x,y), from an input image

I(x,y).

0 1 2

i i
L (x, y) G(x, y,σ) I(x, y)

 for i , ,...S

= ∗

= +
 (1)

2 2 2() / 2

2

1
(, ,)

2
ix y

i

i

G x y e
σ

σ
πσ

− += (2)

2

2

0
2

i

S
i in
σ σ σ

  = ⋅ −   
 (3)

where σi is called the scale of the Gaussian filter and i is

called the scale index. S is the number of scaled images

to be generated and 3 is chosen for S in this paper as well

as in the previous work in [1]. In the later substeps, these

scaled images are used to generate keypoints. The

Gaussian kernel used in the operation above, G(x, y, σi),

depends on σi while σ0 is a given parameter which

represents the scale of the first Gaussian-blurred image.

Once σ0 is given, the scales of the other images are

determined from (3) where it is assumed that the input

image is Gaussian-blurred with σin [1].

After the Gaussian Blurred image is generated, the

next operation is to derive the DoG (Difference of

Gaussians) image, Di(x,y), which is computed by

subtracting Li from Li+1 as described in (4). From S+3

Li(x,y) images, S+2 DoG images are produced.

 1
(,) (,) (,) 0 1 1

i i i
D x y L x y L x y for i , ,...,S+= − = +

 (4)

This set of the S+2 DoG images generated as

described above is called the first octave of the DoG

images. The second octave is generated as follows. The

Image

Scale-space generation

Local extrema detection

Keypoint detection

Orientation assignment

Descriptor generation

SIFT feature vector

Gaussian-

blurred image

Keypoint

detection

Descriptor

generation

Keypoint

Fig. 1. SIFT algorithm.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.2, APRIL, 2013 159

L0(x,y) for the second octave is derived from the S-th

Gaussian-blurred image, LS(x,y), by down-sampling it by

every other pixels along both horizontal and vertical

directions. Then, Li(x,y), for i=1,…S+2 is generated

using (5) to (7). Note that the scale σi in (3) is replaced

by σ'i, in (7) [6].

0

(,) (, , ') (,)

 1 2 2

i i
L x y G x y L x y

 for i , ,...S

σ= ∗

= +
 (5)

2 2 2() / 2 '

2

1
(, , ')

2 '
ix y

i

i

G x y e
σ

σ
πσ

− += (6)

2

0
' 2 1

i

S
i
σ σ

  = ⋅ −   
 (7)

The next octaves can also be produced in the same

manner as the second octave which is generated from (5),

(6) and (7) with L0(x,y) derived by down-sampling the

LS(x,y) of the previous octave. Note that each octave

consists of S+3 Gaussian-blurred images and S+2 DoG

images.

2. Local Extrema Detection

A DoG pixel at the location (x,y) of the i-th scale,

Di(x,y), is compared with the 8 DoG pixels around the

location in the (3x3) window, and also the DoG pixels in

the 3x3 windows of the (i+1)-th and (i-1)-th scales. The

Di(x,y), is marked as a keypoint candidate if it has

extreme value among the 27 DoG pixels in the 3x3x3

window. This local extrema detection is performed for

every pixel in the DoG images and every extremum point

is recorded as a keypoint candidate.

3. Keypoint Detection

In order to select the final keypoints from all keypoint

candidates derived in the previous substep, the next

substep carries out two tests: contrast check and

eliminating edge responses. For contrast check, Di(x,y) of

every keypoint candidate is compared with a predefined

threshold. If the value is less than the threshold, the point

is discarded from the keypoint candidate. This paper uses

0.03 as the predefined threshold, which is the same

valued used in [2]. In eliminating edge response,

Inequality (8) is tested. Only the keypoint candidate that

satisfies (8) is finally chosen as the keypoint.

2
() (1)

()

Tr r

Det r

+
<

2
H

H
 (8)

(1,) (1,) 2 (,)

(, 1) (, 1) 2 (,)

((1, 1) (1, 1)

 (1, 1) (1, 1)) / 4

xx xy

xy yy

xx i i i

yy i i i

xy i i

i i

D x y D x y D x y

D x y D x y D x y

D x y D x y

D x y D x y

 ∆ ∆
 =
 ∆ ∆ 

∆ = + + − −

∆ = + + − −

∆ = + + − − +

− + − + − −

H

 (9)

where r is a predefined threshold chosen as 10 [2] and

Tr(H) and Det(H) are computed as follows:

2

()

()

xx yy

xx yy xy

Tr

Det

=∆ +∆

=∆ ∆ −∆

H

H
 (10)

4. Orientation Assignment

For a window of size
1

(2 (2 3) 1)
2

N
Round σ

+
⋅ ⋅ ⋅ +

x
1

(2 (2 3) 1)
2

N
Round σ

+
⋅ ⋅ ⋅ + around a keypoint,

gradients are computed for all pixels in this area. Note

that σ denotes the scale of a keypoint, N is chosen as 4

[2], and Round() represents the rounding function [7].

Gradient is computed in the horizontal and vertical

directions as follows:

((1,) (1,)) / 2

((, 1) (, 1)) / 2

x i i

y i i

L x y L x y

L x y L x y

∆ = + − −

∆ = + − −
 (11)

Then, the gradient magnitude, (,)m x y and the

gradient orientation, (,)x yθ , are obtained from (12).

2 2 1(,) , (,) tan

y

x y

x

m x y x yθ
−
 ∆  = ∆ +∆ =   ∆ 

 (12)

5. Descriptor Generation

Within the window of size
1

(2 (2 3) 1)
2

N
Round σ

+
⋅ ⋅ ⋅ +

x
1

(2 (2 3) 1)
2

N
Round σ

+
⋅ ⋅ ⋅ + , a sub-region of size

(2 (4.5) 1)Round σ⋅ + x (2 (4.5) 1)Round σ⋅ + centered

at the same pixel as the window is defined and all

locations in this sub-region are used to build a gradient

160 EUNG SUP KIM et al : A NOVEL HARDWARE DESIGN FOR SIFT GENERATION WITH REDUCED MEMORY REQUIREMENT

orientation histogram. The gradient orientation at each

location within the sub-region is mapped to one of the 36

bins. Each bin covers 10 degree and total 36 bins cover

360 degree of orientations. The gradient magnitude at

each location within the sub-region is weighted by a

Gaussian window with a scale σ that is 1.5 times that of

the scale of the keypoint.

The value of the histogram bin is made by summing

all of the weighted magnitudes with the same gradient

orientation. After the orientation histogram is generated,

the bin with the largest value is picked as the dominant

orientation of the keypoint. If there are bins with larger

than 80% of the largest value, new keypoints with that

orientation are created. In other words, more than one

descriptor can be generated for the same location with

different dominant orientations.

Along the derived dominant orientation, all gradients

obtained from (12) are rotated. To this end, the gradient

orientation, (x,y) obtained as in (12), is subtracted from

the dominant orientation. The gradient magnitude is

weighted by a Gaussian weighting function with its

standard deviation window
σ which is equal to a half of the

width of the descriptor window. Within the rotated

gradient window, another sub-region, the descriptor

window, is defined as the square of size (W x W) around a

keypoint where W is defined as follows:

 W =
1

(2 (3) 1)
2

N
Round σ

+
⋅ ⋅ + (13)

The descriptor window is partitioned into

(N+1)x(N+1) subregions. There are NxN points at which

the edges of four adjacent subregions cross. Each point

of them has a gradient histogram with 8 orientation bins.

The value of each gradient sample within the window is

distributed into adjacent histogram bins. For each

subregion, there are at most eight adjacent histogram bins

along x, y, and orientation bins each of which makes two

bins independently. Suppose that the distance of the

gradient sample from the center of the bin is [dx, dy, do].

Then, each entry of the gradient sample is multi1plied by

weight (1-dx)(1-dy)(1-do). With the histograms of 16

sub-regions, 16x8 bins are concatenated to form a vector,

f. It is normalized such that its Euclidean norm [8]

becomes a unit length, and then each component of the

normalized vector is clipped not to exceed the predefined

threshold, 0.2 [2]. The vector, which is re-normalized

once again after the clipping operation, becomes the final

image features. Further details about the SIFT algorithm

are presented in [2].

III. ANALYSIS OF THE MEMORY

REQUIREMENT BY THE PREVIOUS SIFT

IMPLEMENTATION

As SIFT requires pixel-by-pixel operations, the

computational complexity increases as the image size

increases. Furthermore, the amount of computation

required for processing each pixel is also very large.

Thus, previous research efforts have been made on the

effective implementation to speed up SIFT generation [1,

3-5]. However, the speed-up is achieved at the cost of

increased hardware cost, especially increased memory

requirement. This section briefly introduces these

previous research efforts and explains the computation

speed and memory requirement of the previous

implementations.

In order to reduce the number of computations, Lowe

in [2] modifies the Gaussian filtering operations of (1)

and (5) by using a Gaussian filter bank in a cascade form.

In the cascade filter bank, the result of a Gaussian filter is

fed to the input of the next Gaussian filter as described in

(14).

 , 1
(,) (, ,) (,)

i cascade i i
L x y G x y L x yσ −= ∗ (14)

As the cascade Gaussian filter must perform the same

operations as (1) or (5), ,cascade i
σ is chosen to make (14)

equal to (1) and (5) [6].

2 2

, 1

1

2 2

0
 (2) (2)

 1 2 2

cascade i i i

i i

S S

for i , ,...,S

σ σ σ

σ

−

−

= −

= −

= +

 (15)

The reason why the cascade Gaussian filtering reduces

computational complexity is because the filter length of

the cascade form is smaller than that of the original form.

Note that ,cascade i
σ defined by (15) is smaller than σi in

(3) or σ'i in (7). A Gaussian filter is, in general,

approximated as an FIR filter of which coefficient

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.2, APRIL, 2013 161

decreases rapidly as the order increases. As the

coefficient of a large order is approximated as 0, the

width of a Gaussian filter with non-zero coefficients is

proportional to σ, the standard deviation of Gaussian

function. Let Gauss
W denote the width of a Gaussian filter,

then Gauss
W is given as follows [7, 9]:

 2 (3) 1
Gauss

W Round σ= ⋅ + (16)

For example, given σ=0.87, Gauss
W becomes 7, and

the Gaussian kernel is [0.0012, 0.0326, 0.2369, 0.4586,

0.2369, 0.0326, 0.0012]. Given σ=0.87, GaussW

becomes 9, and the Gaussian kernel is [0.0056, 0.0309,

0.1050, 0.2188, 0.2794, 0.2188, 0.1050, 0.0309, 0.0056].

Bonato in [1] proposes a hardware implementation that

includes cascade Gaussian filters as in [2]. Although the

organization may reduce computational complexity, it

may increase the cost of the hardware because it requires

a number of delay buffers, which are necessary to store

the intermediate results of the Gaussian filtering

operation. Fig. 2(a) represents the Gaussian filter bank in

the implementation presented in [1]. The block labeled

“Gaussian” represents the hardware resource for

Gaussian filtering operation. An input image is processed

by the uppermost Gaussian filter, and then L0 is

generated. The numbers in parentheses in the right of the

label “Gaussian” represents the filter width when σ0=1.

The filter width of the first Gaussian filter is equal to 7.

The output of the first filter, L0, is forwarded to the input

of the second filter. Then, the second filter produces L1.

With the cascaded operations, all Gaussian-blurred

images from L0 to L5 are generated.

A DoG image is generated by computing the

differences between the Gaussian-blurred images. To

obtain one DoG image, two Gaussian blurred images are

necessary. In this cascade filter organization, the two

blurred images are not produced at the same time. Thus,

a buffer is necessary to store the blurred image that is

produced ahead of the other blurred image for the

derivation of a DoG image. In Fig. 2, the block labeled

“Pre-DoG Delay line” represents such a buffer. The

numbers labeled within parentheses in the right of the

label represents the number of the lines to be stored in

the buffer when σ0=1. For instance, when the size of an

input image is 1280 x 720, 2 lines mean that the buffer

needs to store 1280 x 2 pixels. In Fig. 2(a), total 20 lines

are required for the Pre-DoG delay buffers.

In Fig. 2(a), DoG images are stored in the Post-DoG

delay line buffers [1]. These buffers are necessary to

have all DoG images available for a given pixel as each

DoG image is produced in different time. Thus, delay

line memories are placed except for the last DoG image.

The size of the memories is determined by the difference

of the time between the generation of the current DoG

image and the generation of the last DoG image [1].

In the implementation shown in Fig. 2(a), additional

buffers are necessary for implementation of Gaussian

filters. Fig. 2(b) shows the internal organization of the

Gaussian filter of width 5 for example. For two-

dimensional Gaussian filtering operations, one-

dimensional Gaussian filtering is performed twice in the

horizontal and vertical directions. Each pixel of the input

image is the input to the horizontal filter in the raster

scan order. The result of the horizontal filter is fed into

the vertical filter. In order to feed the pixels necessary for

the vertical filtering operations, it is necessary to store

the results of the horizontal filter. In Fig. 2(b), Z-W

indicates one line memory and in total, 4 line memories

Post-DoG
Delay line(6)

Post-DoG
Delay line(18)

Pre-DoG

Delay line(6)

Gaussian(7)

-

-

-

-

-

Pre-DoG
Delay line(2)

Pre-DoG
Delay line(5)

Pre-DoG
Delay line(4)

Pre-DoG
Delay line(3)

Gaussian(5)

Gaussian(7)

Gaussian(9)

Gaussian(11)

Gaussian(13)

Post-DoG

Delay line(15)

Post-DoG
Delay line(11)

Input
pixel

DoG pixels

L0

L1

L2

L3

L4

L5

D0

D1

D2

D3

D4

Adder tree

A
d
d
e
r
tr
e
e

Z-2Z-2

Z-4Z-4

Vertical filterHorizontal filter

x

G(2)

x

G(1)

x

G(0)

x

G(-1)

x

G(-2)

x

Z-1

G(0) x

Z-1

G(0)

Z-1

xG(-1)x

G(-2)

Li-1(x, y)
Z-w

Z-w

Z-w

Z-w

Li(x, y)

 (a) (b)

Fig. 2. Cascade Gaussian filer bank (a) Filter bank structure, (b) Gaussian filter structure.

162 EUNG SUP KIM et al : A NOVEL HARDWARE DESIGN FOR SIFT GENERATION WITH REDUCED MEMORY REQUIREMENT

are required as the filter width is 5.

IV. PROPOSED HARDWARE ARCHITECTURE

WITH REDUCED MEMORY REQUIREMENT

In this section, two new techniques to reduce the

number of the line buffers storing the input image and the

intermediate results are proposed. The first technique is

parallel computation of Gaussian filtering operations,

which reduces the internal memory at the cost of

increasing computational complexity. The second

technique is a change of the processing order by

partitioning an input image into subblocks and

processing the block-by-block order. This technique

reduces internal memory at the cost of increasing

external memory bandwidth. Details of these two

techniques are explained next in this section.

1. Parallel Gaussian Filter Bank

Fig. 3(a) shows the architecture for the Parallel

Gaussian filter bank. The input image is stored in the

source line buffer, and the stored image is input to all

Gaussian filters, which operate in parallel. As the results

of all Gaussian filters are available simultaneously for

the next operations, pre-DoG delay line buffers are not

necessary. The size of the source line memory is the

same as the width of the widest Gaussian filter because

the shared source line buffer provides input to all

Gaussian filters.

Fig. 3(b) shows the internal organization of the two-

dimensional Gaussian filters. In this organization, the

vertical filtering operation is performed ahead of the

horizontal filtering operation. The vertical filter receives

multiple pixels at a time and generates the result pixel-

by-pixel, which is fed into the horizontal filter. With the

interchange of the processing order between the vertical

operation and horizontal operation, the internal line

buffer to store intermediate results of the filter is also no

longer necessary.

Comparison between Fig. 2(a) and Fig. 3(a) shows that

the parallel Gaussian filter bank significantly reduces the

number of line memories. The memory sizes shown in

Fig. 2 and 3 are obtained for the case of σ0=1. For the

organization in Fig. 2(a), 20 lines in the Pre-DoG delay

buffers, 50 lines in the Post-DoG delay buffers, and 46

lines in the buffer storing the horizontal filtering results

are required. On the other hand, for the organization in

Fig. 3(a), only 18 lines within the common source line

buffer is needed, so that 98 line memories are eliminated

by the parallel Gaussian filter. Note that the reduction of

the line memory is achieved at the cost of increasing

computational complexity. This is because the filter

width of the Parallel Gaussian filter is wider than that of

the cascade one.

2. Block-based Gaussian Filter

In addition to the parallel Gaussian filter presented in

the previous subsection, further memory reduction is

achieved by partitioning an input image into multiple

blocks and changing the processing order from the raster-

(b)

Gaussian (7)

-
Gaussian (7)

Gaussian (11)

Gaussian (13)

Gaussian (15)

Gaussian (19)

-

-

-

-

Source Buffer
Input
pixel

L0

L1

L2

L3

L4

L5

D0

D1

D2

D3

D4

L(x, y)

Horizontal filter

I(x+2, y+2)

I(x+2, y+1)

I(x+2, y)

I(x+2, y-1)

I(x+2, y-2)

xG(0)

Z-1

xG(1)xG(2)

++ ++Z-1 Z-1 Z-1

+

+ x

x

x

Vertical filter

G(0)

G(1)

G(2)

A
d
d
e
r
tr
e
e

 (a) (b)

Fig. 3. Parallel Gaussian filer bank (a) Filter bank structure, (b) Gaussian filter structure.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.2, APRIL, 2013 163

scan order to the block-by-block order. Details are

explained next.

Fig. 4 shows the new processing order of pixels in an

input image. In this figure, an input image is partitioned

into 15 blocks. Pixels within each block are processed in

the vertical direction, which is represented by the dotted

arrows in a block. After a column is processed, the right

column is processed next. After all pixels in a block are

processed, the next block is processed in the raster scan

order as indicated by the thick arrows. After the first

octave are completed, LS(x,y) is loaded for the next

octave. This is repeated until all octaves are processed.

The processing order of pixels is determined according

to the first filtering direction of 1D Gaussian filter and

the structure of the source block memory, which is

explained later. The first filtering direction of 1D

Gaussian filter should be perpendicular to the processing

order of pixels not to have a temporal storage between

the first and second 1D Gaussian filters. Thus, if pixels

are processed in the vertical direction, the direction of the

first 1D Gaussian should be horizontal.

Fig. 5 shows the architecture of the source pixel block

buffer. The width of a block is equal to 2/)1(−GaussW

where GaussW represents the width of the widest

Gaussian filter. The vertical size of a block is determined

based on the available memory bandwidth, which is

explained later in this subsection. Recall that GaussW is

19 when σ0 is 1. Then, the width of the block becomes 9

pixels. To access 9 pixels at a time, three SRAMs with a

32-bit data bus are necessary. Note that 12 pixels can be

accessed at a time with three 32-bit SRAMs, the memory

space for 3 pixels is not used. In order to avoid this

underutilization of memory space, the memory

organization is modified to reduce the number of pixels

for Gaussian filter to 17 pixels. In this case, the width of

a block becomes 8 pixels, which can be accessed with

two 32-bit SRAMs. Therefore, no space is wasted, and

consequently, memory utilization is improved.

Each block memory is composed of two 32bit SRAMs,

each of which can output 4 pixels at a time within a row.

The source pixel buffer consists of three blocks of

memory, composed of 6 SRAMs in total. After five

SRAMs are loaded among the 6 SRAMs, Gaussian

filtering is started. During these SRAMs are being read

for filtering operations, the last one SRAM is used for

load from the external memory. For these buffers, data

are loaded, read for filtering, and discarded in a circular

manner.

When a block from an input image is loaded, all pixels

within the block are processed by the Gaussian filter.

Since the Gaussian kernel is a separable 2D kernel, 1D

filtering is performed in the horizontal and vertical

directions, in sequence. The horizontal filtering is

performed first and then its results are input to the

vertical filter. Note that no internal memory is necessary

to store the result of the horizontal filtering because the

pixels are scanned along the vertical direction as shown

in Fig. 4.

After Gaussian filtering operation is completed for the

current location, a DoG pixel is generated by subtracting

the result of the adjacent scale images. If the DoG is a

maximum or minimum compared with the DoGs within a

3x3x3 window, the location is considered as a keypoint

candidate. Thus, the DoG needs to be derived not only

for all pixels in the block but also one pixel outside the

block as shown in Fig. 6(a). Therefore, the Gaussian

filtering operation as well as the DoG operation is carried

out for all pixels in a region, which is bigger than the

block by one additional row above the top and another

one row below the bottom. In fact, these additional rows

are processed twice for Gaussian filtering and DoG

operations for the adjacent blocks along the vertical

direction.

Fig. 4. Block-by-block processing order.

S
R
A
M

Source pixels

To Gaussian filter bank

8
2

)1(
==

−

Block
Gauss W

W

32

Fig. 5. The organization of the source block memory.

164 EUNG SUP KIM et al : A NOVEL HARDWARE DESIGN FOR SIFT GENERATION WITH REDUCED MEMORY REQUIREMENT

Recall that pixels are filtered along the vertical

direction. Thus, two DoG buffers with (Block height+2)

length in each scale are used to temporarily store DoG

values. Then, these values are used to find an extremum

in a 3x3x3 window. These temporary buffers can also be

used to store the DoG values, which are reused by the

next right block. In Fig. 6(b), the shaded squares

represent the pixels to be stored in these buffers.

For a Gaussian filter with Gauss
W length, Gauss

W X

Gauss
W window is used for filtering operations. For

filtering operations at the boundary of a block, the

window includes pixels outside the block. Therefore,

pixels in (1) / 2
Gauss

W + lines are loaded twice for two

adjacent blocks along the vertical direction. Let Block
H

denote the height of a block. Then, the ratio of the lines

accessed twice is given by

1

 Gauss

Block

W
Bandwidth Increase Ratio

H

+
= (17)

This ratio decreases as the block height

Block
H increases. The internal memory size for the block

storage also increases in proportion to BlockH . Thus, the

buffer size needs to be determined by considering a

trade-off between the buffer size and the bandwidth

requirement. In this paper, BlockH is chosen as 46, so that

an SRAM for the source pixel buffer stores 64 words

among which 9 words are above the block and the other

9 words are below the block.

V. HARDWARE ORGANIZATION FOR COST AND

BANDWIDTH REDUCTIONS

Bonato in [1] simplifies the SIFT algorithm by finding

certain parts of computation which can be eliminated

without significant drop of feature quality. 16 versions of

simplified algorithms are proposed in [1]. This paper

adopts the simplified version which eliminates

‘Duplicated image’ and ‘Location refinement’. Three

octaves are implemented as in [1]. Fig. 7 shows the

hardware implementation, which is composed of four

main function units: Gaussian filter bank, Keypoint

…

…

…

(a) (b)

Fig. 6. DoG pixel reuse (a) Redundantly filtered DoG pixels,

(b) Region of pixels stored in the DoG buffer.

Fig. 7. The block diagram of the SIFT hardware implementation.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.2, APRIL, 2013 165

detection, Orientation assignment, and Descriptor

generation blocks. The Keypoint detection block includes

the local extrema detection explained in Section 2.2.

Implementation issues of these blocks are described in

this section.

1. Hardware Cost Reduction with a Shared Gaussian

Filter Bank Core

Fig. 8 shows the organization of the Parallel Gaussian

filter bank. Fig. 8(a) represents the parallel Gaussian

filter bank using three sets of the line memories to store

the source images of the three octaves, respectively. Note

that the filter bank core is shared by all three octaves. As

a result, the hardware size for the filter bank is reduced

by the shared filter core in the proposed organization

when compared with the filter bank core in [1] which

duplicates the filter bank core for every octave. The

hardware share increases the computation for Gaussian

filtering by about 1.3125 (=1 + 1/4 + 1/16) times.

Nonetheless, the proposed implementation achieves the

target performance (see Section 6).

(S+1)-th Gaussian-blurred image, LS(x,y), is down-

sampled and then stored in the line memory. This image

is used as the input image for the next octave. After all

operations on a line for an octave are completed,

operations on a line for the next octave are started as

soon as the source line buffer becomes full. In this

manner, the minimum number of the lines of source

pixels are stored in internal memories without storage of

down-sampled LS(x,y) into the external memory. The

second Gaussian-blurred image, L1(x,y), is stored in the

external memory to be used later by the orientation

assignment block (see Section 5.3 for the reason of using

this image).

Fig. 8(b) shows the organization of the parallel

Gaussian filter bank using block memories as the internal

buffers. The (S+1)-th Gaussian-blurred image, LS(x,y), is

down-sampled and then is stored in the external memory.

The second Gaussian-blurred image, L1(x,y), is also

stored to the external memory. As explained in Section

4.2, the DoG buffer is needed to store DoG pixels of two

columns. This buffer is included inside the parallel

Gaussian filter bank.

2. Balanced Keypoint Detection Block

In Fig. 7, the upper right part represents the

organization of the Keypoint detection block. Three

Extrema detection modules are followed by Contrast

check modules run in parallel. The detected extrema are

stored in a FIFO. As the number of pixels determined as

an extrema is small, the Eliminating edge response

module does not require large computing power. Thus, a

single Eliminating edge response module is used to

compute all detected extrema stored the FIFO. Finally,

detected keypoints are stored in the keypoint FIFO and

used by the Orientation assignment block.

3. Orientation Assignment Block with Reduced

Memory Access

In this stage, gradient magnitudes and orientations are

generated from the Gaussian-blurred image. As the

gradients are generated from the same scale image as a

keypoint, all scales of the Gaussian-blurred images need

to be stored in an internal memory [2]. Nevertheless, the

implementation in [1] stores only a single Gaussian-

blurred image in an internal memory and produces

gradient magnitude and orientation from the stored image

of which scale can be different from a keypoint. As a

result, the quality of the generated feature may be

degraded although the internal memory is reduced.

This paper proposes a new organization that stores

only a single Gaussian-blurred image without quality loss.

For the case when the scale of the stored image is

Parallel
Gaussian
filter bank

core

Source line buffer (Octave0)

(Octave1)

(Oct.2)

S
o
u
rc
e
 l
o
a
d
e
r

LS

Di
DoG buffer

Gaussian
writer

L1

Downsample

(a) Parallel Gaussian filter bank with line memories

Parallel
Gaussian
filter bank

core

Source
block
buffer

S
o
u
rc
e
 l
o
a
d
e
r

LS

Di
DoG buffer

Gaussian writer
L1

Downsample
Down sampled
src writer

(b) Parallel Gaussian filter bank with block memories

Fig. 8. Parallel Gaussian filter bank organizations.

166 EUNG SUP KIM et al : A NOVEL HARDWARE DESIGN FOR SIFT GENERATION WITH REDUCED MEMORY REQUIREMENT

different from that of a keypoint, the Gaussian-blurred

image of the necessary scale is generated using the stored

image by additional Gaussian filtering operation. To this

end, the Gaussian-blurred image with scale index, i=1, is

stored in the external memory, and then reloaded at the

beginning of the Orientation assignment step.

In Fig. 7, the lower left part shows the structure of the

Orientation assignment block. For the computation of a

single keypoint, 43x43 pixels of a Gaussian-blurred

image are loaded, and then stored into a buffer which

consists of seven 43x8 bit memories. This buffer supplies

a series of seven pixels in the vertical direction to the

Gaussian filter at a time. In the case of the scale index, i

=1, the filtering operation is not carried out, but in the

case of i=2 or i=3, the Gaussian-blurred image with the

same scale of the keypoint is regenerated by the Gaussian

filter. The pixels generated by the Gaussian filter are

stored into a buffer with three 43x8 bit memories. This

buffer provides the Gradient generation block with three

pixels in the vertical direction. The Gradient generation

block conducts the operation denoted by Eq. (11) and the

CORDIC block computes Eq. (12) using the CORDIC

algorithm [1].

4. Descriptor Generation Block

In [1], descriptor generation is implemented in

software whereas the remaining parts of SIFT operations

are implemented in hardware. With this software

implementation of descriptor generation, real-time SIFT

is possible only when the number of keypoints in an

image is small. For example, assuming that 0.05% of

pixels are detected as keypoints, the computation

performance of 91,000 cycles/(descriptor generation) is

required to process a QVGA (320x240) size image at the

speed of 30 frames per second with the operating clock

frequency of 100 MHz [1]. The required computing

power increases as the number of keypoints increases. It

is observed that the ratio of keypoints ranges from 0.1 to

0.5% for ordinary images. In this case, the computation

speed needs to be improved by ten times for the

partitioned implementation in [1] to process real-time

SIFT operation. Therefore, in this paper, the descriptor

generation is also implemented in hardware.

In Fig. 7, the lower right part shows the organization

of Descriptor generation block. Gradient samples, which

consist of the gradient orientations and magnitudes

generated by the Orientation assignment block, are fed to

the Dominant orientation detector as well as the Gradient

histogram element generator. The Dominant orientation

detector produces a gradient orientation histogram, and

derives the dominant orientations, which are stored into a

FIFO. Recall that multiple dominant orientations can be

found with respect to a single keypoint.

The Gradient histogram element generator rotates the

local patch around the keypoint along the dominant

orientation, and computes up to 8 histogram elements

from a gradient sample in the patch according to its

location, orientation and magnitude. The elements are fed

to the Histogram distributor, which generates gradient

histograms. All the completed histograms are

concatenated to become the final descriptor, which is

stored in the external memory.

VI. EVALUATION

1. Number of Multiplications and Memory size

Fig. 9 compares the cascade Gaussian filter and the

parallel Gaussian filter in terms of the number of

multiplications and the line memory size. It is assumed

that the Gaussian filtering operations are conducted with

σin=0.5 and the line memories are composed of dual port

SRAMs. Various values of σo are used for comparison.

Fig. 9(a) shows that the parallel filter reduces the size of

the line memory by more than 80%. Fig. 9(b) compares

the number of multiplications for the computation for

octave 0. As shown in the figure, the number of

multiplications is increased by 48.5% for σo=1.4, which

is the largest increase among all values of σo. 9(c) shows

the number of multipliers for three octaves. In the

proposed design, this number is the same as that for

octave 0 only because the Gaussian filter bank core is

shared by three octaves. On the other hand, the previous

design duplicates the filter bank core so that the number

of multipliers is increased by more than 170%. As a

result, the proposed design requires about 50% of

multipliers for all three octaves when compared with the

previous design.

2. Logic Gate Count

The SIFT algorithm is implemented in hardware as

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.2, APRIL, 2013 167

shown in Fig. 7. The Verilog HDL is used for the

hardware model, which is synthesized targeted for an

FPGA (Altera STRATIX II, EP2S60F672C3). Table 1

shows the synthesis results of the four hardware blocks,

Gaussian filter bank, Keypoint detector, Orientation

assignment, and Descriptor generation. Each block is

synthesized independently and the results are compared

with those presented in [1].

The Gaussian filter bank does not include any DSP

blocks. For the ESB bits, which refer to the size of the

internal memory, the proposed design reduces them by

98.0% for the implementation of the Gaussian filter bank.

This is caused by the proposed technique for memory

size reduction. The number of registers and LUTs are

also decreased by 58.6% and 36.6%, respectively,

because of the shared filter core for 3 octaves. The

hardware cost of the Keypoint detector in the proposed

design is also decreased because it omits Location

refinement operation, which is not essential in the SIFT

algorithm. The hardware cost of the orientation

assignment is increased because it includes an additional

Gaussian filter.

Table 2 presents the synthesis results for the entire

hardware. Again, the results presented in [1] are given in

this table for comparison. The number of DSP blocks is

the same as that given in [1]. On the other hand, the ESB

bits, registers, and LUTs are reduced by 94.4%, 70.0%,

and 61.2%, respectively.

The maximum operating clock frequency of the

proposed design is 70.3 MHz, which is given by the

synthesis report. For the four blocks are synthesized

independently, the maximum frequencies for Gaussian

filter bank, Keypoint detector, and Orientation

assignment blocks are 91.8 MHz, 130.0 MHz, 93.4 MHz,

and 137.1 MHz, respectively. These frequencies are not

compared with those in [1] which does not present the

maximum operating clock frequency, but does the

supplied clock frequency which varies from 2.3 MHz to

100 MHz.

3. Processing Time

The processing speed is estimated by simulation with

the implementation in Verilog HDL and the estimated

speed is compared with the previous implementation as

shown Table 3.

116
132

150

177

18 22 26 30

0

50

100

150

200

1.00 1.20 1.40 1.60

L
in

e
m

em
o
ry

 s
iz

e

σ
0

Cascade Parallel

(a) Line memory size

52
58

66
7872

86
98

114

0

20

40

60

80

100

120

1.00 1.20 1.40 1.60T
h
e

n
u
m

b
er

 o
f
m

u
lt

ip
li
er

s

σ0

Cascade Parallel

(b) The number of multiplications for octave 0

142
160

180
212

72
86

98
114

0

50

100

150

200

1.00 1.20 1.40 1.60T
h
e

n
u
m

b
er

 o
f
m

u
lt

ip
li
er

s

σ0

Cascade Parallel

(c) The number of multipliers for three octaves

Fig. 9. Comparison of the hardware costs of parallel and

cascade Gaussian filter banks.

Table 1. FPGA synthesis results of the three subblocks

Previous design [1] Proposed design Comparison

DSP blocks ESB bits Register LUT

DSP

blocks
ESB bits Register LUT

DSP

blocks
ESB bits Register LUT

Gaussian filter bank 0 910,000 7,256 15,137 0 17,784 3,003 9,594 - -98.0% -58.6% -36.6%

Keypoint detector 6 200,000 2,094 14,357 1 49,152 1,033 2,536 -83.3% -75.4% -50.7% -82.3%

Orientation assignment 0 30,000 670 1,863 0 6,000 1,505 5,294 - -80.0% 124.6% 184.2%

Descriptor generation - - - - 0 49,544 4,130 11,648 - - - -

168 EUNG SUP KIM et al : A NOVEL HARDWARE DESIGN FOR SIFT GENERATION WITH REDUCED MEMORY REQUIREMENT

On average, it takes about 3,017 cycles to generate a

keypoint with its descriptor. Thus, the proposed

implementation allows QVGA-size image with about

0.719% (=[50 Mcycles/sec)/[(320 x 240 pixels/frame) x

(30 frames/sec) x (3,017 cycles/keypoints)]) ratio to be

processed at the speed of 30 frames per second. On the

other hand, the implementation in [1] allows only

0.024% keypoint ratio with the speed of 91,000

cycles/keypoints. For VGA-size image, 0.181% ratio is

allowed by the proposed implementation whereas

0.006% is allowed by the previous work.

VII. CONCLUSIONS

In this paper, a novel hardware architecture and

organization for the SIFT algorithm is proposed and its

implementation in Verilog HDL is presented. The

architecture adopts parallel Gaussian filter bank and

processes pixels in the block-by-block order. As a

consequence, the memory size is reduced by 94.4%. The

parallel Gaussian filter bank requires more multipliers

than the previous work increasing the computational

complexity. Furthermore, the Gaussian regeneration filter

also increases the computation complexity. However, the

overall hardware logic size is decreased because only a

single Gaussian filter bank is shared by all octaves.

ACKNOWLEDGMENTS

This work was supported by the Industrial Strategic

technology development program funded by the Ministry

of Knowledge Economy (MKE, Korea). (10039188,

Development of multimedia convergence programmable

platform for smart vehicles)

REFERENCES

[1] V. Bonato, E. Marques, and G.A. Constantinides, “A

Parallel Hardware Architecture for Scale and

Rotation Invariant Feature Detection,” IEEE Trans.

on Circuits and Syst. Video Technology, vol. 18, no.

12, pp. 1703-1712, Dec. 2008.

[2] D. Lowe, “Distinctive image features from scale-

invariant keypoints,” Int. Journal of Computer

Vision, vol. 60, no. 2, pp. 91–110, Jan. 2004.

[3] M. Grabner, H. Grabner, and H. Bischof, "Fast

approximated SIFT," ACCV 2006, LNCS 3851, pp.

918–927, 2006.

[4] Y. Ke and R. Sukthankar, “PCA-SIFT: A more

distinctive representation for local image

descriptors,” in Proc. IEEE CVPR, pp. 506-513,

Washington, USA, 2004.

[5] K.G. Derpanis, E.T.H. Leung, and M. Sizintsev,

“Fast Scale-Space Feature Representations by

Generalized Integral Images,” in Proc. IEEE ICIP,

San Antonio, USA, 2007, pp. 521-524

[6] T. Lindeberg, "Scale-space for discrete signals,"

IEEE Trans. On Pattern Analysis and Machine

Intelligence, vol. 12, no. 3, pp. 234-254, Apr. 1990.

[7] R. Hess. SIFT Feature Detector (Source Code).

Available:

http://blogs.oregonstate.edu/hess/code/sift/

[8] J.R. Magnus and H. Neudecker, Matrix Differential

Calculus with Applications in Statistics and

Econometrics, 2nd edition, Wiley, 1999.

[9] D.B. Williams and V. Madisetti, Digital Signal

Processing Handbook, 1st edition, CRC Press, 1997.

Eung Sup Kim received the B.S. and

M.S. degrees in Electronic Engi-

neering from Soongsil University,

Seoul, Korea, in 2004 and 2006,

respectively, and the Ph.D. degree in

Electronics Engineering from Seoul

National University, Korea, 2012.

His research interests are in the area of

SoC design for multimedia applications including

computing for video compression and image analysis.

Table 2. FPGA synthesis results of the proposed SIFT

hardware

 DSP blocks ESB bits Registers LUT

Previous design
[1]

8 1,350,000 19,100 43,366

Proposed design 8 75,240 5,729 16,832

Comparison 0.0% -94.4% -70.0% -61.2%

Table 3. Maximum keypoint ratio for real time operation

Frame size FPS
Proposed
(50 HMz)

Bonato
(50 MHz)

320x240 30 0.719% 0.024%

640x480 30 0.181% 0.006%

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.2, APRIL, 2013 169

Hyuk-Jae Lee received the B.S. and

M.S. degrees in Electronics

Engineering from Seoul National

University, Korea, in 1987 and 1989,

respectively, and the Ph.D. degree in

Electrical and Computer Engineering

from Purdue University at West

Lafayette, Indiana, in 1996. From

1998 to 2001, he worked at the Sever and Workstation

Chipset Division of Intel Corporation in Hillsboro, Oregon

as a senior component design engineer. From 1996 to

1998, he was on the faculty of the Department of

Computer Science of Louisiana Tech University at Ruston,

Louisiana. In 2001, he joined the School of Electrical

Engineering and Computer Science at Seoul National

University, Korea, where he is currently working as a

professor. He is a founder of Mamurian Design, Inc., a

fabless SoC design house for mobile multimedia

applications. His research interests are in the areas of

computer architecture and SoC design for multimedia

applications.

