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Abstract—Scale Invariant Feature Transform (SIFT) 

generates image features widely used to match objects 

in different images. Previous work on hardware-

based SIFT implementation requires excessive 

internal memory and hardware logic [1]. In this paper, 

a new hardware organization is proposed to 

implement SIFT with less memory and hardware cost 

than the previous work. To this end, a parallel 

Gaussian filter bank is adopted to eliminate the 

buffers that store intermediate results because 

parallel operations allow all intermediate results 

available at the same time. Furthermore, the 

processing order is changed from the raster-scan 

order to the block-by-block order so that the line 

buffer size storing the source image is also reduced. 

These techniques trade the reduction of memory size 

with a slight increase of the execution time and 

external memory bandwidth. As a result, the memory 

size is reduced by 94.4%. The proposed hardware for 

SIFT implementation includes the Descriptor 

generation block, which is omitted in the previous 

work [1]. The addition of the hardwired descriptor 

generation improves the computation speed by about 

30 times when compared with the previous work.    

 

Index Terms—SIFT, computer vision, hardware 

implementation, memory reduction, Gaussian filter 

bank     

I. INTRODUCTION 

SIFT (Scale-Invariant Feature Transform) generates 

one of the popular local image features widely used to 

match objects in different images [2]. Because of its 

outstanding performance, it is used for various 

applications such as object recognition, image stitching, 

and robot navigation. However, complex computation 

and excessive memory access make it difficult to process 

SIFT operation for a large size video in real time. To 

speed up the SIFT operation, a number of previous 

research efforts have been made [3-5]. Among them, one 

presents a hardware-based implementation that achieves 

a real-time SIFT operation of QVGA-sized (320x240) 

video at the rate of 30 frames per second [1]. Although 

this work in [1] enables a real-time SIFT operation, the 

hardware cost is very large because intermediate results 

are stored in internal memory inside a chip. In a PC 

environment, it is an efficient approach to speed up the 

computation with an increased memory requirement 

because a PC has sufficient memory but a limited 

computing power for SIFT computation. However, in a 

customized ASIC or SoC (System-on-Chip), the use of a 

large internal memory significantly increases the cost of 

the chip. 

This paper proposes a new hardware architecture and 

organization for the SIFT algorithm. In order to reduce 

the hardware cost, the proposed design attempts to 

reduce the internal buffer. To this end, the new design 

adopts a parallel Gaussian filter bank, which performs 

Gaussian filtering operations in parallel with various 

scales. The use of parallel Gaussian filters reduces the 

number of line buffers that temporarily store the 

intermediate results. For an additional reduction of the 
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internal memory size, the input image is partitioned to be 

stored in a buffer. As a result, the buffer size to store the 

input image is also reduced because only the partitioned 

sub-image needs to be stored in the buffer. The entire 

procedure for the SIFT computation is implemented in 

hardware and the computation speed is increased by 

about 30 times when compared with the previous work 

[1]. 

The rest part of this paper is organized as follows. 

Section II briefly introduces the SIFT algorithm and 

Section III presents a previous hardware implementation 

for the SIFT algorithm with analysis on the computation 

speed and memory requirement. Section IV proposes a 

new hardware architecture that attempts to reduce the 

hardware cost and to speed up computation time and 

Section V describes a hardware organization for further 

reductions of the hardware cost and memory access. In 

Section VI, the efficiency of the proposed hardware 

design is evaluated and conclusions are presented in 

Section VII. 

II. SCALE-INVARIANT FEATURE TRANSFORM 

(SIFT) 

This section briefly introduces the SIFT algorithm. Fig. 

1 shows the computation flow of the SIFT algorithm. The 

procedure is composed of two main steps: keypoint 

detection and descriptor generation. In the first step, the 

input image is scanned to find the locations of pixels 

with special characteristics, called keypoints. In the 

second step, a feature is created for characterizing each 

keypoint found in the first step. This feature consists of 

the histograms of gradients around the keypoint. The 

keypoint detection step is composed of three substeps: 

scale-space image generation, local extrema detection, 

and keypoint detection. The descriptor generation step 

consists of orientation assignment and descriptor 

generation substeps. For self-containment, these substeps 

are briefly explained next and further details are 

available in [2]. 

 

1. Scale-space Image Generation 

 

In this step, Gaussian-blurred images are generated by 

filtering an input image with Gaussian filters. The 

convolution operation described below produces a 

Gaussian-blurred image, Li(x,y), from an input image 

I(x,y). 
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where σi is called the scale of the Gaussian filter and i is 

called the scale index. S is the number of scaled images 

to be generated and 3 is chosen for S in this paper as well 

as in the previous work in [1]. In the later substeps, these 

scaled images are used to generate keypoints. The 

Gaussian kernel used in the operation above, G(x, y, σi), 

depends on σi while σ0 is a given parameter which 

represents the scale of the first Gaussian-blurred image. 

Once σ0 is given, the scales of the other images are 

determined from (3) where it is assumed that the input 

image is Gaussian-blurred with σin [1]. 

After the Gaussian Blurred image is generated, the 

next operation is to derive the DoG (Difference of 

Gaussians) image, Di(x,y), which is computed by 

subtracting Li from Li+1 as described in (4). From S+3 

Li(x,y) images, S+2 DoG images are produced. 
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This set of the S+2 DoG images generated as 

described above is called the first octave of the DoG 

images. The second octave is generated as follows. The 
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Fig. 1. SIFT algorithm. 
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L0(x,y) for the second octave is derived from the S-th 

Gaussian-blurred image, LS(x,y), by down-sampling it by 

every other pixels along both horizontal and vertical 

directions. Then, Li(x,y), for i=1,…S+2 is generated 

using (5) to (7). Note that the scale σi in (3) is replaced 

by σ'i, in (7) [6]. 
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The next octaves can also be produced in the same 

manner as the second octave which is generated from (5), 

(6) and (7) with L0(x,y) derived by down-sampling the 

LS(x,y) of the previous octave. Note that each octave 

consists of S+3 Gaussian-blurred images and S+2 DoG 

images. 

 

2. Local Extrema Detection 

 

A DoG pixel at the location (x,y) of the i-th scale, 

Di(x,y), is compared with the 8 DoG pixels around the 

location in the (3x3) window, and also the DoG pixels in 

the 3x3 windows of the (i+1)-th and (i-1)-th scales. The 

Di(x,y), is marked as a keypoint candidate if it has 

extreme value among the 27 DoG pixels in the 3x3x3 

window. This local extrema detection is performed for 

every pixel in the DoG images and every extremum point 

is recorded as a keypoint candidate. 

 

3. Keypoint Detection 

 

In order to select the final keypoints from all keypoint 

candidates derived in the previous substep, the next 

substep carries out two tests: contrast check and 

eliminating edge responses. For contrast check, Di(x,y) of 

every keypoint candidate is compared with a predefined 

threshold. If the value is less than the threshold, the point 

is discarded from the keypoint candidate. This paper uses 

0.03 as the predefined threshold, which is the same 

valued used in [2]. In eliminating edge response, 

Inequality (8) is tested. Only the keypoint candidate that 

satisfies (8) is finally chosen as the keypoint. 
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where r is a predefined threshold chosen as 10 [2] and 

Tr(H) and Det(H) are computed as follows: 
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4. Orientation Assignment 
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⋅ ⋅ ⋅ +  around a keypoint, 

gradients are computed for all pixels in this area. Note 

that σ denotes the scale of a keypoint, N is chosen as 4 

[2], and Round() represents the rounding function [7]. 

Gradient is computed in the horizontal and vertical 

directions as follows:  
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Then, the gradient magnitude, ( , )m x y  and the 

gradient orientation, ( , )x yθ , are obtained from (12). 
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5. Descriptor Generation 

 

Within the window of size 
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at the same pixel as the window is defined and all 

locations in this sub-region are used to build a gradient 
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orientation histogram. The gradient orientation at each 

location within the sub-region is mapped to one of the 36 

bins. Each bin covers 10 degree and total 36 bins cover 

360 degree of orientations. The gradient magnitude at 

each location within the sub-region is weighted by a 

Gaussian window with a scale σ that is 1.5 times that of 

the scale of the keypoint. 

The value of the histogram bin is made by summing 

all of the weighted magnitudes with the same gradient 

orientation. After the orientation histogram is generated, 

the bin with the largest value is picked as the dominant 

orientation of the keypoint. If there are bins with larger 

than 80% of the largest value, new keypoints with that 

orientation are created. In other words, more than one 

descriptor can be generated for the same location with 

different dominant orientations. 

Along the derived dominant orientation, all gradients 

obtained from (12) are rotated. To this end, the gradient 

orientation, (x,y) obtained as in (12), is subtracted from 

the dominant orientation. The gradient magnitude is 

weighted by a Gaussian weighting function with its 

standard deviation window
σ  which is equal to a half of the 

width of the descriptor window. Within the rotated 

gradient window, another sub-region, the descriptor 

window, is defined as the square of size (W x W) around a 

keypoint where W is defined as follows: 
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The descriptor window is partitioned into 

(N+1)x(N+1) subregions. There are NxN points at which 

the edges of four adjacent subregions cross. Each point 

of them has a gradient histogram with 8 orientation bins. 

The value of each gradient sample within the window is 

distributed into adjacent histogram bins. For each 

subregion, there are at most eight adjacent histogram bins 

along x, y, and orientation bins each of which makes two 

bins independently. Suppose that the distance of the 

gradient sample from the center of the bin is [dx, dy, do]. 

Then, each entry of the gradient sample is multi1plied by 

weight (1-dx)(1-dy)(1-do). With the histograms of 16 

sub-regions, 16x8 bins are concatenated to form a vector, 

f. It is normalized such that its Euclidean norm [8] 

becomes a unit length, and then each component of the 

normalized vector is clipped not to exceed the predefined 

threshold, 0.2 [2]. The vector, which is re-normalized 

once again after the clipping operation, becomes the final 

image features. Further details about the SIFT algorithm 

are presented in [2]. 

III. ANALYSIS OF THE MEMORY 

REQUIREMENT BY THE PREVIOUS SIFT 

IMPLEMENTATION 

As SIFT requires pixel-by-pixel operations, the 

computational complexity increases as the image size 

increases. Furthermore, the amount of computation 

required for processing each pixel is also very large. 

Thus, previous research efforts have been made on the 

effective implementation to speed up SIFT generation [1, 

3-5]. However, the speed-up is achieved at the cost of 

increased hardware cost, especially increased memory 

requirement. This section briefly introduces these 

previous research efforts and explains the computation 

speed and memory requirement of the previous 

implementations. 

In order to reduce the number of computations, Lowe 

in [2] modifies the Gaussian filtering operations of (1) 

and (5) by using a Gaussian filter bank in a cascade form. 

In the cascade filter bank, the result of a Gaussian filter is 

fed to the input of the next Gaussian filter as described in 

(14). 
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The reason why the cascade Gaussian filtering reduces 

computational complexity is because the filter length of 

the cascade form is smaller than that of the original form. 

Note that ,cascade i
σ  defined by (15) is smaller than σi in 

(3) or σ'i in (7). A Gaussian filter is, in general, 

approximated as an FIR filter of which coefficient 
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decreases rapidly as the order increases. As the 

coefficient of a large order is approximated as 0, the 

width of a Gaussian filter with non-zero coefficients is 

proportional to σ, the standard deviation of Gaussian 

function. Let Gauss
W denote the width of a Gaussian filter, 

then Gauss
W is given as follows [7, 9]: 

 

 2 (3 ) 1
Gauss

W Round σ= ⋅ +  (16) 

 

For example, given σ=0.87, Gauss
W  becomes 7, and 

the Gaussian kernel is [0.0012, 0.0326, 0.2369, 0.4586, 

0.2369, 0.0326, 0.0012]. Given σ=0.87, GaussW  

becomes 9, and the Gaussian kernel is [0.0056, 0.0309, 

0.1050, 0.2188, 0.2794, 0.2188, 0.1050, 0.0309, 0.0056]. 

Bonato in [1] proposes a hardware implementation that 

includes cascade Gaussian filters as in [2]. Although the 

organization may reduce computational complexity, it 

may increase the cost of the hardware because it requires 

a number of delay buffers, which are necessary to store 

the intermediate results of the Gaussian filtering 

operation. Fig. 2(a) represents the Gaussian filter bank in 

the implementation presented in [1]. The block labeled 

“Gaussian” represents the hardware resource for 

Gaussian filtering operation. An input image is processed 

by the uppermost Gaussian filter, and then L0 is 

generated. The numbers in parentheses in the right of the 

label “Gaussian” represents the filter width when σ0=1. 

The filter width of the first Gaussian filter is equal to 7. 

The output of the first filter, L0, is forwarded to the input 

of the second filter. Then, the second filter produces L1. 

With the cascaded operations, all Gaussian-blurred 

images from L0 to L5 are generated. 

A DoG image is generated by computing the 

differences between the Gaussian-blurred images. To 

obtain one DoG image, two Gaussian blurred images are 

necessary. In this cascade filter organization, the two 

blurred images are not produced at the same time. Thus, 

a buffer is necessary to store the blurred image that is 

produced ahead of the other blurred image for the 

derivation of a DoG image. In Fig. 2, the block labeled 

“Pre-DoG Delay line” represents such a buffer. The 

numbers labeled within parentheses in the right of the 

label represents the number of the lines to be stored in 

the buffer when σ0=1. For instance, when the size of an 

input image is 1280 x 720, 2 lines mean that the buffer 

needs to store 1280 x 2 pixels. In Fig. 2(a), total 20 lines 

are required for the Pre-DoG delay buffers. 

In Fig. 2(a), DoG images are stored in the Post-DoG 

delay line buffers [1]. These buffers are necessary to 

have all DoG images available for a given pixel as each 

DoG image is produced in different time. Thus, delay 

line memories are placed except for the last DoG image. 

The size of the memories is determined by the difference 

of the time between the generation of the current DoG 

image and the generation of the last DoG image [1]. 

In the implementation shown in Fig. 2(a), additional 

buffers are necessary for implementation of Gaussian 

filters. Fig. 2(b) shows the internal organization of the 

Gaussian filter of width 5 for example. For two-

dimensional Gaussian filtering operations, one-

dimensional Gaussian filtering is performed twice in the 

horizontal and vertical directions. Each pixel of the input 

image is the input to the horizontal filter in the raster 

scan order. The result of the horizontal filter is fed into 

the vertical filter. In order to feed the pixels necessary for 

the vertical filtering operations, it is necessary to store 

the results of the horizontal filter. In Fig. 2(b), Z-W 

indicates one line memory and in total, 4 line memories 
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Fig. 2. Cascade Gaussian filer bank (a) Filter bank structure, (b) Gaussian filter structure. 
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are required as the filter width is 5. 

IV. PROPOSED HARDWARE ARCHITECTURE 

WITH REDUCED MEMORY REQUIREMENT 

In this section, two new techniques to reduce the 

number of the line buffers storing the input image and the 

intermediate results are proposed. The first technique is 

parallel computation of Gaussian filtering operations, 

which reduces the internal memory at the cost of 

increasing computational complexity. The second 

technique is a change of the processing order by 

partitioning an input image into subblocks and 

processing the block-by-block order. This technique 

reduces internal memory at the cost of increasing 

external memory bandwidth. Details of these two 

techniques are explained next in this section. 

 

1. Parallel Gaussian Filter Bank 

 

Fig. 3(a) shows the architecture for the Parallel 

Gaussian filter bank. The input image is stored in the 

source line buffer, and the stored image is input to all 

Gaussian filters, which operate in parallel. As the results 

of all Gaussian filters are available simultaneously for 

the next operations, pre-DoG delay line buffers are not 

necessary. The size of the source line memory is the 

same as the width of the widest Gaussian filter because 

the shared source line buffer provides input to all 

Gaussian filters. 

Fig. 3(b) shows the internal organization of the two-

dimensional Gaussian filters. In this organization, the 

vertical filtering operation is performed ahead of the 

horizontal filtering operation. The vertical filter receives 

multiple pixels at a time and generates the result pixel-

by-pixel, which is fed into the horizontal filter. With the 

interchange of the processing order between the vertical 

operation and horizontal operation, the internal line 

buffer to store intermediate results of the filter is also no 

longer necessary.  

Comparison between Fig. 2(a) and Fig. 3(a) shows that 

the parallel Gaussian filter bank significantly reduces the 

number of line memories. The memory sizes shown in 

Fig. 2 and 3 are obtained for the case of σ0=1. For the 

organization in Fig. 2(a), 20 lines in the Pre-DoG delay 

buffers, 50 lines in the Post-DoG delay buffers, and 46 

lines in the buffer storing the horizontal filtering results 

are required. On the other hand, for the organization in 

Fig. 3(a), only 18 lines within the common source line 

buffer is needed, so that 98 line memories are eliminated 

by the parallel Gaussian filter. Note that the reduction of 

the line memory is achieved at the cost of increasing 

computational complexity. This is because the filter 

width of the Parallel Gaussian filter is wider than that of 

the cascade one. 

 

2. Block-based Gaussian Filter 

 

In addition to the parallel Gaussian filter presented in 

the previous subsection, further memory reduction is 

achieved by partitioning an input image into multiple 

blocks and changing the processing order from the raster-
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Fig. 3. Parallel Gaussian filer bank (a) Filter bank structure, (b) Gaussian filter structure. 
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scan order to the block-by-block order. Details are 

explained next. 

Fig. 4 shows the new processing order of pixels in an 

input image. In this figure, an input image is partitioned 

into 15 blocks. Pixels within each block are processed in 

the vertical direction, which is represented by the dotted 

arrows in a block. After a column is processed, the right 

column is processed next. After all pixels in a block are 

processed, the next block is processed in the raster scan 

order as indicated by the thick arrows. After the first 

octave are completed, LS(x,y) is loaded for the next 

octave. This is repeated until all octaves are processed. 

The processing order of pixels is determined according 

to the first filtering direction of 1D Gaussian filter and 

the structure of the source block memory, which is 

explained later. The first filtering direction of 1D 

Gaussian filter should be perpendicular to the processing 

order of pixels not to have a temporal storage between 

the first and second 1D Gaussian filters. Thus, if pixels 

are processed in the vertical direction, the direction of the 

first 1D Gaussian should be horizontal. 

Fig. 5 shows the architecture of the source pixel block 

buffer. The width of a block is equal to 2/)1( −GaussW  

where GaussW  represents the width of the widest 

Gaussian filter. The vertical size of a block is determined 

based on the available memory bandwidth, which is 

explained later in this subsection. Recall that GaussW  is 

19 when σ0 is 1. Then, the width of the block becomes 9 

pixels. To access 9 pixels at a time, three SRAMs with a 

32-bit data bus are necessary. Note that 12 pixels can be 

accessed at a time with three 32-bit SRAMs, the memory 

space for 3 pixels is not used. In order to avoid this 

underutilization of memory space, the memory 

organization is modified to reduce the number of pixels 

for Gaussian filter to 17 pixels. In this case, the width of 

a block becomes 8 pixels, which can be accessed with 

two 32-bit SRAMs. Therefore, no space is wasted, and 

consequently, memory utilization is improved. 

Each block memory is composed of two 32bit SRAMs, 

each of which can output 4 pixels at a time within a row. 

The source pixel buffer consists of three blocks of 

memory, composed of 6 SRAMs in total. After five 

SRAMs are loaded among the 6 SRAMs, Gaussian 

filtering is started. During these SRAMs are being read 

for filtering operations, the last one SRAM is used for 

load from the external memory. For these buffers, data 

are loaded, read for filtering, and discarded in a circular 

manner. 

When a block from an input image is loaded, all pixels 

within the block are processed by the Gaussian filter. 

Since the Gaussian kernel is a separable 2D kernel, 1D 

filtering is performed in the horizontal and vertical 

directions, in sequence. The horizontal filtering is 

performed first and then its results are input to the 

vertical filter. Note that no internal memory is necessary 

to store the result of the horizontal filtering because the 

pixels are scanned along the vertical direction as shown 

in Fig. 4. 

After Gaussian filtering operation is completed for the 

current location, a DoG pixel is generated by subtracting 

the result of the adjacent scale images. If the DoG is a 

maximum or minimum compared with the DoGs within a 

3x3x3 window, the location is considered as a keypoint 

candidate. Thus, the DoG needs to be derived not only 

for all pixels in the block but also one pixel outside the 

block as shown in Fig. 6(a). Therefore, the Gaussian 

filtering operation as well as the DoG operation is carried 

out for all pixels in a region, which is bigger than the 

block by one additional row above the top and another 

one row below the bottom. In fact, these additional rows 

are processed twice for Gaussian filtering and DoG 

operations for the adjacent blocks along the vertical 

direction. 

 

 

Fig. 4. Block-by-block processing order. 
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Fig. 5. The organization of the source block memory. 
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Recall that pixels are filtered along the vertical 

direction. Thus, two DoG buffers with (Block height+2) 

length in each scale are used to temporarily store DoG 

values. Then, these values are used to find an extremum 

in a 3x3x3 window. These temporary buffers can also be 

used to store the DoG values, which are reused by the 

next right block. In Fig. 6(b), the shaded squares 

represent the pixels to be stored in these buffers.  

For a Gaussian filter with Gauss
W length, Gauss

W X 

Gauss
W window is used for filtering operations. For 

filtering operations at the boundary of a block, the 

window includes pixels outside the block. Therefore, 

pixels in ( 1) / 2
Gauss

W +  lines are loaded twice for two 

adjacent blocks along the vertical direction. Let Block
H  

denote the height of a block. Then, the ratio of the lines 

accessed twice is given by  

 
1

      Gauss

Block

W
Bandwidth Increase Ratio

H

+
=  (17) 

 

This ratio decreases as the block height 

Block
H increases. The internal memory size for the block 

storage also increases in proportion to BlockH . Thus, the 

buffer size needs to be determined by considering a 

trade-off between the buffer size and the bandwidth 

requirement. In this paper, BlockH is chosen as 46, so that 

an SRAM for the source pixel buffer stores 64 words 

among which 9 words are above the block and the other 

9 words are below the block. 

V. HARDWARE ORGANIZATION FOR COST AND 

BANDWIDTH REDUCTIONS 

Bonato in [1] simplifies the SIFT algorithm by finding 

certain parts of computation which can be eliminated 

without significant drop of feature quality. 16 versions of 

simplified algorithms are proposed in [1]. This paper 

adopts the simplified version which eliminates 

‘Duplicated image’ and ‘Location refinement’. Three 

octaves are implemented as in [1]. Fig. 7 shows the 

hardware implementation, which is composed of four 

main function units: Gaussian filter bank, Keypoint 

…
 

     

…
 

…
 

 

(a)                      (b) 

Fig. 6. DoG pixel reuse (a) Redundantly filtered DoG pixels, 

(b) Region of pixels stored in the DoG buffer. 

 

 

 

Fig. 7. The block diagram of the SIFT hardware implementation. 
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detection, Orientation assignment, and Descriptor 

generation blocks. The Keypoint detection block includes 

the local extrema detection explained in Section 2.2. 

Implementation issues of these blocks are described in 

this section. 

 

1. Hardware Cost Reduction with a Shared Gaussian 

Filter Bank Core 

 

Fig. 8 shows the organization of the Parallel Gaussian 

filter bank. Fig. 8(a) represents the parallel Gaussian 

filter bank using three sets of the line memories to store 

the source images of the three octaves, respectively. Note 

that the filter bank core is shared by all three octaves. As 

a result, the hardware size for the filter bank is reduced 

by the shared filter core in the proposed organization 

when compared with the filter bank core in [1] which 

duplicates the filter bank core for every octave. The 

hardware share increases the computation for Gaussian 

filtering by about 1.3125 (=1 + 1/4 + 1/16) times. 

Nonetheless, the proposed implementation achieves the 

target performance (see Section 6). 

(S+1)-th Gaussian-blurred image, LS(x,y), is down-

sampled and then stored in the line memory. This image 

is used as the input image for the next octave. After all 

operations on a line for an octave are completed, 

operations on a line for the next octave are started as 

soon as the source line buffer becomes full. In this 

manner, the minimum number of the lines of source 

pixels are stored in internal memories without storage of 

down-sampled LS(x,y) into the external memory. The 

second Gaussian-blurred image, L1(x,y), is stored in the 

external memory to be used later by the orientation 

assignment block (see Section 5.3 for the reason of using 

this image). 

Fig. 8(b) shows the organization of the parallel 

Gaussian filter bank using block memories as the internal 

buffers. The (S+1)-th Gaussian-blurred image, LS(x,y), is 

down-sampled and then is stored in the external memory. 

The second Gaussian-blurred image, L1(x,y), is also 

stored to the external memory. As explained in Section 

4.2, the DoG buffer is needed to store DoG pixels of two 

columns. This buffer is included inside the parallel 

Gaussian filter bank. 

 

2. Balanced Keypoint Detection Block 

 

In Fig. 7, the upper right part represents the 

organization of the Keypoint detection block. Three 

Extrema detection modules are followed by Contrast 

check modules run in parallel. The detected extrema are 

stored in a FIFO. As the number of pixels determined as 

an extrema is small, the Eliminating edge response 

module does not require large computing power. Thus, a 

single Eliminating edge response module is used to 

compute all detected extrema stored the FIFO. Finally, 

detected keypoints are stored in the keypoint FIFO and 

used by the Orientation assignment block. 

 

3. Orientation Assignment Block with Reduced 

Memory Access 

 

In this stage, gradient magnitudes and orientations are 

generated from the Gaussian-blurred image. As the 

gradients are generated from the same scale image as a 

keypoint, all scales of the Gaussian-blurred images need 

to be stored in an internal memory [2]. Nevertheless, the 

implementation in [1] stores only a single Gaussian-

blurred image in an internal memory and produces 

gradient magnitude and orientation from the stored image 

of which scale can be different from a keypoint. As a 

result, the quality of the generated feature may be 

degraded although the internal memory is reduced. 

This paper proposes a new organization that stores 

only a single Gaussian-blurred image without quality loss. 

For the case when the scale of the stored image is 
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Fig. 8. Parallel Gaussian filter bank organizations. 



166 EUNG SUP KIM et al : A NOVEL HARDWARE DESIGN FOR SIFT GENERATION WITH REDUCED MEMORY REQUIREMENT 

different from that of a keypoint, the Gaussian-blurred 

image of the necessary scale is generated using the stored 

image by additional Gaussian filtering operation. To this 

end, the Gaussian-blurred image with scale index, i=1, is 

stored in the external memory, and then reloaded at the 

beginning of the Orientation assignment step. 

In Fig. 7, the lower left part shows the structure of the 

Orientation assignment block. For the computation of a 

single keypoint, 43x43 pixels of a Gaussian-blurred 

image are loaded, and then stored into a buffer which 

consists of seven 43x8 bit memories. This buffer supplies 

a series of seven pixels in the vertical direction to the 

Gaussian filter at a time. In the case of the scale index, i 

=1, the filtering operation is not carried out, but in the 

case of i=2 or i=3, the Gaussian-blurred image with the 

same scale of the keypoint is regenerated by the Gaussian 

filter. The pixels generated by the Gaussian filter are 

stored into a buffer with three 43x8 bit memories. This 

buffer provides the Gradient generation block with three 

pixels in the vertical direction. The Gradient generation 

block conducts the operation denoted by Eq. (11) and the 

CORDIC block computes Eq. (12) using the CORDIC 

algorithm [1]. 

 

4. Descriptor Generation Block 

 

In [1], descriptor generation is implemented in 

software whereas the remaining parts of SIFT operations 

are implemented in hardware. With this software 

implementation of descriptor generation, real-time SIFT 

is possible only when the number of keypoints in an 

image is small. For example, assuming that 0.05% of 

pixels are detected as keypoints, the computation 

performance of 91,000 cycles/(descriptor generation) is 

required to process a QVGA (320x240) size image at the 

speed of 30 frames per second with the operating clock 

frequency of 100 MHz [1]. The required computing 

power increases as the number of keypoints increases. It 

is observed that the ratio of keypoints ranges from 0.1 to 

0.5% for ordinary images. In this case, the computation 

speed needs to be improved by ten times for the 

partitioned implementation in [1] to process real-time 

SIFT operation. Therefore, in this paper, the descriptor 

generation is also implemented in hardware. 

In Fig. 7, the lower right part shows the organization 

of Descriptor generation block. Gradient samples, which 

consist of the gradient orientations and magnitudes 

generated by the Orientation assignment block, are fed to 

the Dominant orientation detector as well as the Gradient 

histogram element generator. The Dominant orientation 

detector produces a gradient orientation histogram, and 

derives the dominant orientations, which are stored into a 

FIFO. Recall that multiple dominant orientations can be 

found with respect to a single keypoint.  

The Gradient histogram element generator rotates the 

local patch around the keypoint along the dominant 

orientation, and computes up to 8 histogram elements 

from a gradient sample in the patch according to its 

location, orientation and magnitude. The elements are fed 

to the Histogram distributor, which generates gradient 

histograms. All the completed histograms are 

concatenated to become the final descriptor, which is 

stored in the external memory. 

VI. EVALUATION 

1. Number of Multiplications and Memory size 

 

Fig. 9 compares the cascade Gaussian filter and the 

parallel Gaussian filter in terms of the number of 

multiplications and the line memory size. It is assumed 

that the Gaussian filtering operations are conducted with 

σin=0.5 and the line memories are composed of dual port 

SRAMs. Various values of σo are used for comparison. 

Fig. 9(a) shows that the parallel filter reduces the size of 

the line memory by more than 80%. Fig. 9(b) compares 

the number of multiplications for the computation for 

octave 0. As shown in the figure, the number of 

multiplications is increased by 48.5% for σo=1.4, which 

is the largest increase among all values of σo. 9(c) shows 

the number of multipliers for three octaves. In the 

proposed design, this number is the same as that for 

octave 0 only because the Gaussian filter bank core is 

shared by three octaves. On the other hand, the previous 

design duplicates the filter bank core so that the number 

of multipliers is increased by more than 170%. As a 

result, the proposed design requires about 50% of 

multipliers for all three octaves when compared with the 

previous design.  

 

2. Logic Gate Count 

 

The SIFT algorithm is implemented in hardware as 
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shown in Fig. 7. The Verilog HDL is used for the 

hardware model, which is synthesized targeted for an 

FPGA (Altera STRATIX II, EP2S60F672C3). Table 1 

shows the synthesis results of the four hardware blocks, 

Gaussian filter bank, Keypoint detector, Orientation 

assignment, and Descriptor generation. Each block is 

synthesized independently and the results are compared 

with those presented in [1]. 

The Gaussian filter bank does not include any DSP 

blocks. For the ESB bits, which refer to the size of the 

internal memory, the proposed design reduces them by 

98.0% for the implementation of the Gaussian filter bank. 

This is caused by the proposed technique for memory 

size reduction. The number of registers and LUTs are 

also decreased by 58.6% and 36.6%, respectively, 

because of the shared filter core for 3 octaves. The 

hardware cost of the Keypoint detector in the proposed 

design is also decreased because it omits Location 

refinement operation, which is not essential in the SIFT 

algorithm. The hardware cost of the orientation 

assignment is increased because it includes an additional 

Gaussian filter. 

Table 2 presents the synthesis results for the entire 

hardware. Again, the results presented in [1] are given in 

this table for comparison. The number of DSP blocks is 

the same as that given in [1]. On the other hand, the ESB 

bits, registers, and LUTs are reduced by 94.4%, 70.0%, 

and 61.2%, respectively. 

The maximum operating clock frequency of the 

proposed design is 70.3 MHz, which is given by the 

synthesis report. For the four blocks are synthesized 

independently, the maximum frequencies for Gaussian 

filter bank, Keypoint detector, and Orientation 

assignment blocks are 91.8 MHz, 130.0 MHz, 93.4 MHz, 

and 137.1 MHz, respectively. These frequencies are not 

compared with those in [1] which does not present the 

maximum operating clock frequency, but does the 

supplied clock frequency which varies from 2.3 MHz to 

100 MHz. 

 

3. Processing Time 

 

The processing speed is estimated by simulation with 

the implementation in Verilog HDL and the estimated 

speed is compared with the previous implementation as 

shown Table 3. 
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(b) The number of multiplications for octave 0 
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(c) The number of multipliers for three octaves 

Fig. 9. Comparison of the hardware costs of parallel and 

cascade Gaussian filter banks. 

 

 

Table 1. FPGA synthesis results of the three subblocks 

Previous design [1] Proposed design Comparison 

 
DSP blocks ESB bits Register LUT 

DSP 

blocks 
ESB bits Register LUT 

DSP 

blocks 
ESB bits Register LUT 

Gaussian filter bank 0 910,000 7,256 15,137 0 17,784 3,003 9,594 - -98.0% -58.6% -36.6% 

Keypoint detector 6 200,000 2,094 14,357 1 49,152 1,033 2,536 -83.3% -75.4% -50.7% -82.3% 

Orientation assignment 0 30,000 670 1,863 0 6,000 1,505 5,294 - -80.0% 124.6% 184.2% 

Descriptor generation - - - - 0 49,544 4,130 11,648 - - - - 
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On average, it takes about 3,017 cycles to generate a 

keypoint with its descriptor. Thus, the proposed 

implementation allows QVGA-size image with about 

0.719% (=[50 Mcycles/sec)/[(320 x 240 pixels/frame) x 

(30 frames/sec) x (3,017 cycles/keypoints)]) ratio to be 

processed at the speed of 30 frames per second. On the 

other hand, the implementation in [1] allows only 

0.024% keypoint ratio with the speed of 91,000 

cycles/keypoints. For VGA-size image, 0.181% ratio is 

allowed by the proposed implementation whereas 

0.006% is allowed by the previous work. 

VII. CONCLUSIONS 

In this paper, a novel hardware architecture and 

organization for the SIFT algorithm is proposed and its 

implementation in Verilog HDL is presented. The 

architecture adopts parallel Gaussian filter bank and 

processes pixels in the block-by-block order. As a 

consequence, the memory size is reduced by 94.4%. The 

parallel Gaussian filter bank requires more multipliers 

than the previous work increasing the computational 

complexity. Furthermore, the Gaussian regeneration filter 

also increases the computation complexity. However, the 

overall hardware logic size is decreased because only a 

single Gaussian filter bank is shared by all octaves. 

ACKNOWLEDGMENTS 

This work was supported by the Industrial Strategic 

technology development program funded by the Ministry 

of Knowledge Economy (MKE, Korea). (10039188, 

Development of multimedia convergence programmable 

platform for smart vehicles) 

REFERENCES 

[1] V. Bonato, E. Marques, and G.A. Constantinides, “A 

Parallel Hardware Architecture for Scale and 

Rotation Invariant Feature Detection,” IEEE Trans. 

on Circuits and Syst. Video Technology, vol. 18, no. 

12, pp. 1703-1712, Dec. 2008. 

[2]  D. Lowe, “Distinctive image features from scale-

invariant keypoints,” Int. Journal of Computer 

Vision, vol. 60, no. 2, pp. 91–110, Jan. 2004. 

[3]  M. Grabner, H. Grabner, and H. Bischof, "Fast 

approximated SIFT," ACCV 2006, LNCS 3851, pp. 

918–927, 2006. 

[4]  Y. Ke and R. Sukthankar, “PCA-SIFT: A more 

distinctive representation for local image 

descriptors,” in Proc. IEEE CVPR, pp. 506-513, 

Washington, USA, 2004. 

[5]  K.G. Derpanis, E.T.H. Leung, and M. Sizintsev, 

“Fast Scale-Space Feature Representations by 

Generalized Integral Images,” in Proc. IEEE ICIP, 

San Antonio, USA, 2007, pp. 521-524 

[6]  T. Lindeberg, "Scale-space for discrete signals," 

IEEE Trans. On Pattern Analysis and Machine 

Intelligence, vol. 12, no. 3, pp. 234-254, Apr. 1990. 

[7]  R. Hess. SIFT Feature Detector (Source Code). 

Available: 

http://blogs.oregonstate.edu/hess/code/sift/ 

[8]  J.R. Magnus and H. Neudecker, Matrix Differential 

Calculus with Applications in Statistics and 

Econometrics, 2nd edition, Wiley, 1999. 

[9]  D.B. Williams and V. Madisetti, Digital Signal 

Processing Handbook, 1st edition, CRC Press, 1997. 

 

 

 

Eung Sup Kim received the B.S. and 

M.S. degrees in Electronic Engi- 

neering from Soongsil University, 

Seoul, Korea, in 2004 and 2006, 

respectively, and the Ph.D. degree in 

Electronics Engineering from Seoul 

National University, Korea, 2012.  

His research interests are in the area of 

SoC design for multimedia applications including 

computing for video compression and image analysis. 

 

Table 2. FPGA synthesis results of the proposed SIFT 

hardware 

 DSP blocks ESB bits Registers LUT 

Previous design 
[1] 

8 1,350,000 19,100 43,366 

Proposed design 8 75,240 5,729 16,832 

Comparison 0.0% -94.4% -70.0% -61.2% 

 

Table 3. Maximum keypoint ratio for real time operation 

Frame size FPS 
Proposed 
(50 HMz) 

Bonato 
(50 MHz) 

320x240 30 0.719% 0.024% 

640x480 30 0.181% 0.006% 

 

 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.2, APRIL, 2013 169 

Hyuk-Jae Lee received the B.S. and 

M.S. degrees in Electronics 

Engineering from Seoul National 

University, Korea, in 1987 and 1989, 

respectively, and the Ph.D. degree in 

Electrical and Computer Engineering 

from Purdue University at West 

Lafayette, Indiana, in 1996. From 

1998 to 2001, he worked at the Sever and Workstation 

Chipset Division of Intel Corporation in Hillsboro, Oregon 

as a senior component design engineer. From 1996 to 

1998, he was on the faculty of the Department of 

Computer Science of Louisiana Tech University at Ruston, 

Louisiana. In 2001, he joined the School of Electrical 

Engineering and Computer Science at Seoul National 

University, Korea, where he is currently working as a 

professor. He is a founder of Mamurian Design, Inc., a 

fabless SoC design house for mobile multimedia 

applications. His research interests are in the areas of 

computer architecture and SoC design for multimedia 

applications. 

 

 

 

 


