DOI QR코드

DOI QR Code

Concentration and separation of nickel from copper alloy dross using chelating regin

킬레이트 수지를 이용한 구리 합금 부산물에서의 니켈의 농축 및 분리

  • Lee, Jung-Il (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Kong, Man-Sik (Functional Materials Research Team, Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 이정일 (한국교통대학교 신소재공학과) ;
  • 공만식 (고등기술연구원 신소재공정센터 기능소재연구팀) ;
  • 류정호 (한국교통대학교 신소재공학과)
  • Received : 2013.03.05
  • Accepted : 2013.03.29
  • Published : 2013.04.30

Abstract

Separation/recovery of valuable metals such as nickel or tin from copper based alloys has recently attracted from the viewpoints of environmental protection and resource recycling. In this report, preliminary study on concentration and separation of nickel from copper based alloy dross using selective adsorption by chelate resin was performed. The chelate resin used in this study has absorbed copper ions more easily than nickel ions in the metal solution, which could allow the concentration/separation of the nickel from the copper base alloy solution. The final molar ratios of Ni and Cu ions in the two concentrated solutions were 70 and 99 % respectively after three-time flowing the solution through the chelate resin column.

최근 금속자원 재활용과 환경보호에 대한 기술적 필요성에 의해 구리(Cu)를 주성분으로 하는 동합금으로부터 니켈, 주석 등의 유가금속 분리/회수에 대한 관심이 높아지고 있다. 본 연구에서는 동합금에 포함된 유가금속들을 분리/회수하는 기초연구중 하나로서, 킬레이트 수지를 이용하여 동합금 제련시 발생하는 부산물에 포함되어 있는 대표적인 유가금속인 니켈(Ni)을 분리/추출할 수 있는 농축 공정의 가능성에 대해 검토하였다. 킬레이트 수지는 원자량이 높은 $Cu^{2+}$ 이온을 $Ni^{2+}$ 이온보다 선택적으로 흡수하였으며, 이러한 과정을 수차례 반복함으로써 실제 동합금 부산물 샘플의 $Ni^{2+}$$Cu^{2+}$ 이온을 농축할 수 있었으며, XRF 분석을 통하여 각각 70 % 및 99 %의 농도로 분리할 수 있음을 확인하였다.

Keywords

References

  1. S.G. Kim, H.Y. Lee and J.K. Oh, "Separation of heavy metals from electroplating waste water by solvent extraction", J. of Korean Inst. of Resources Recycling, 12 (2003) 25.
  2. D. Banerjee, "Metal recovery from blast furnace sludge and flue dust using leaching technologies", Res. J. Chem. Environ. 11 (2007) 18.
  3. A. Agrawal, K.K. Sahu and B.D. Pandey, "Solid waste management in non-ferrous industries in India", Res. Conserv. Rec. 42 (2004) 99. https://doi.org/10.1016/j.resconrec.2003.10.004
  4. Y. Kim, H. Kim and C. Jang, "Characteristics of geopolymer based on recyclong resources", J. Kor. Cryst. Growth and Cryst. Tech. 22 (2012) 152. https://doi.org/10.6111/JKCGCT.2012.22.3.152
  5. L.E.O.C. Rodrigues and M.B. Mansur, "Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries", J. Power Sources 195 (2010) 3735. https://doi.org/10.1016/j.jpowsour.2009.12.071
  6. B.S. Kim and Y.H. Lee, "The fundamental study on the separation of cobalt and nickel from copper based molten alloys", J. of the Korean Inst. of Met. & Mater. 31 (1993) 1355.
  7. A. Agrawal, D. Bagchi, S. Kumari, V. Kumar and B.D. Pandey, "Recovery of nickel powder from copper bleed electrolyte of an Indian copper smelter by electrolysis", Powder Technology 177 (2007) 133. https://doi.org/10.1016/j.powtec.2007.03.032
  8. T. Kinoshita, S. Akita, N. Kobayashi, S. Nii, F. Kawaizumi and K. Takahashi, "Metal recovery from non-mounted printed wiring boards via hydrometallurgical processing", Hydrometallurgy 69 (2003) 73. https://doi.org/10.1016/S0304-386X(03)00031-8
  9. F. Bakhtiari, H. Atashi, M. Zivdar and S.A.S Bagheri, "Continuous copper recovery from a smelter's dust in stirred tank reactors", Int. J. Miner. Process 86 (2008) 50. https://doi.org/10.1016/j.minpro.2007.10.003
  10. B.J. Kwon, H. Jung and J.Y. Kim, "Study on CMPO (Carbamoylphosphate) derivative functionalized ordered mesoporous silicates for selective removal of lanthanide", J. Kor. Cryst. Growth and Cryst. Tech. 22 (2012) 291. https://doi.org/10.6111/JKCGCT.2012.22.6.291
  11. R. Shah and S. Devi, "Chelating resin containing sbonded dithizone for the separation of copper(II), nickel(II) and zinc(II)", Talanta 45 (1998) 1089. https://doi.org/10.1016/S0039-9140(97)00215-4
  12. F. Goutfer-Wurmser, H. Konno, Y. Kaburagi, K. Oshida and M. Inagaki, "Formation of nickel dispersed carbon spheres from chelate resin and their magnetic properties", Synthetic Metals 118 (2001) 33. https://doi.org/10.1016/S0379-6779(00)00280-0
  13. D.V. Biuller and K.W. Bruland, "Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using Nobiaschelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS)", Marine Chemistry 130-131 (2012) 12. https://doi.org/10.1016/j.marchem.2011.12.001
  14. S. Kagaya, E. Maeba, Y. Inoue, W. Kamichatani, T. Kajiwara, H. Yanai, M. Saito and K. Tohda, "A solid phase extraction using a chelate resin immobilizing carboxymethylated pentaethylenehexamine for separation and preconcentration of trace elements in water samples", Talanta 79 (2009) 146. https://doi.org/10.1016/j.talanta.2009.03.016

Cited by

  1. from copper alloy dross vol.24, pp.2, 2014, https://doi.org/10.6111/JKCGCT.2014.24.2.084
  2. Characteristics of fresh mortar with particle size and replacement ratio of copper slag vol.26, pp.1, 2016, https://doi.org/10.6111/JKCGCT.2016.26.1.041