DOI QR코드

DOI QR Code

Primitive IPs Design Based on a Memristor-CMOS Circuit Technology

멤리스터-CMOS 회로구조 기반의 프리미티브 IP 설계

  • Han, Ca-Ram (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Lee, Sang-Jin (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Eshraghian, Kamran (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Cho, Kyoungrok (College of Electrical and Computer Engineering, Chungbuk National University)
  • 한가람 (충북대학교 전자정보대학) ;
  • 이상진 (충북대학교 전자정보대학) ;
  • ;
  • 조경록 (충북대학교 전자정보대학)
  • Received : 2013.01.02
  • Published : 2013.04.25

Abstract

This paper presents design methodology for Memristor-CMOS circuits and its application to primitive IPs design. We proposed a Memristor model and designed basic elements, Memristor AND/OR gates. The primitive IPs based on a Memristor-CMOS technology is proposed for a Memristive system design. The netlists of IPs are extracted from the layouts of Memristor-CMOS and is verified with SPICE-like Memristor model under $0.18{\mu}m$ CMOS technology. As a result, an example design Memristor-CMOS full adder has only 47.6 % of silicon area compare to the CMOS full-adder.

본 논문에서는 멤리스터 기반의 논리 게이트와 멤리스터-CMOS 기반의 프리미티브 IP 설계 방법을 제안하였다. 회로 설계를 위한 멤리스터 모델을 제시하고 멤리스터의 AND 및 OR 연결을 기본으로 멤리스터-CMOS 회로설계를 위한 프리미티브 IP설계 방법을 제안하였고, $0.18{\mu}m$ CMOS 공정과 멤리스터 SPICE 모델을 이용한 시뮬레이션을 통해 검증되었다. 회로는 멤리스터와 CMOS 결합을 하여 레이아웃 설계를 하고 네트리스트를 추출하였다. 디지털 프리미티브 IP들에 대해 기존의 CMOS와 면적비교를 수행하였으며, 멤리스터-CMOS 전가산기는 CMOS 전가산기에 비하여 47.6 %의 면적이 감소되었다.

Keywords

References

  1. International Technology Roadmap for Semiconductors, ITRS 2009 Edition, Emerging Research Devices. from http://www.itrs.net.
  2. N. H. E. Weste and K. Eshraghian, "Principles of CMOS VLSI Design: A systems perspective," Addison Wesley, 1985.
  3. 강순구, 김두환, 이상진, 조경록 "멤리스터의 모델 링과 연상메모리(M_CAM) 회로 설계," 전자공학회논문지, 제48권 SD편, 제7호, 328-336쪽, 2011년 7월
  4. J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. A. Ohlberg, W. Wu, D. R. Stewart, and R. S. Williams, "A hybrid nanomemristor/transistor logic circuit capable of self-programming," Proceedings of the National Academy of Sciences, vol. 106, no. 6, pp. 1699-1703, 2009. https://doi.org/10.1073/pnas.0806642106
  5. J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, "'Memristive' switches enable 'stateful' logic operations via material implication," Nature, vol. 464, pp. 873-876, 2010. https://doi.org/10.1038/nature08940
  6. L. O. Chua, "Memristor-the missing circuit element," IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519, 1971. https://doi.org/10.1109/TCT.1971.1083337
  7. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, pp. 80-83, 2008. https://doi.org/10.1038/nature06932
  8. D. Strukov and R. Williams, "Exponential ionic drift: fast switching and low volatility of thin-film memristors," Applied Physics A: Materials Science & Processing, vol. 94, no. 3, pp. 515-519, 2009. https://doi.org/10.1007/s00339-008-4975-3
  9. K. Cho, S. J. Lee, O. Kavehei, and K. Eshraghian "Influence of memristor 4th fundamental circuit component on nano-electronics educational platform," 9th European Workshop on Microelectronics Education, pp. 67-70, 2012.
  10. O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi, and D. Abbott "The fourth element: characteristics, modelling, and electromagnetic theory of the memristor," The Proceedings of Royal Society A: Mathematical, Physical & Engineering Sciences, pp. 1-28, 2010.
  11. K. Eshraghian, O. Kavehei, K. R. Cho, J. M. Chappell, A. Iqbal, S. F. Al-Sarawi, and D. Abbott "Memristive device fundamentals and modeling: applications to circuits and systems simulation," Proceedings of the IEEE, vol. 100, no. 6, pp. 1991-2007, 2012. https://doi.org/10.1109/JPROC.2012.2188770
  12. J. G. Simmons, "Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film," Journal of Applied Physics, vol. 34, no. 6, pp. 1793-1803, 1963. https://doi.org/10.1063/1.1702682
  13. F. Miao, J. J. Yang, J. P. Strachan, D. Stewart, R. S. Williams, and C. N. Lau, "Force modulation of tunnel gaps in metal oxide memristive nanoswitches," Applied Physics Letters, vol. 95, no. 11, art. no. 113503, 2009. https://doi.org/10.1063/1.3227651
  14. D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, "Molecule-Independent electrical switching in Pt/Organic Monolayer/Ti devices," Nano Letters, vol. 4, no. 1, pp. 133-136, 2004. https://doi.org/10.1021/nl034795u
  15. A. Shkabko, M. H. Aguirre, P. Hug, A. Weidenkaff, I. Marozau, and T. Lippert, "The effects of switching time and SrTiO3-xNy nanostructures on the operation of Al/SrTiO3-xNy/Al memristors," IOP Conference Series: Materials Science and Engineering, vol. 8, no. 1, art. no. 074508, 2010.
  16. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, "Nanoscale memristor device as synapse in neuromorphic systems," Nano Letters, vol. 10, no. 4, pp. 1297-1301, 2010. https://doi.org/10.1021/nl904092h

Cited by

  1. Design of Redundant Binary Adder based on Memristor-CMOS vol.51, pp.9, 2014, https://doi.org/10.5573/ieie.2014.51.9.067