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Abstract – This paper proposes a hybrid searching algorithm based on parameter identification for 

power system load models. Hybrid searching was performed by the combination of particle swarm 

optimization (PSO) and a complex method, which enhances the convergence of solutions closer to 

minima and takes advantage of global searching with PSO. In this paper, the load model of interest is 

composed of a ZIP model and a third-order model for induction motors for stability analysis, and 

parameter sets are obtained that best-fit the output measurement data using the hybrid search. The 

origin of the hybrid method is to further apply the complex method as a local search for finding better 

solutions using the selected particles from the performed PSO procedure. 
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1. Introduction 
 

The modeling of system components critically affects 

the accuracy of stability analysis in power system 

operation and planning [1]. Thus, system identification is 

considered as important as those approaches to stability 

analysis [2]. In power systems, there are diverse 

components that need to be modeled; among them, loads 

are said to be difficult to model owing to the fact that they 

are composed of several parts and have different 

topological features. In addition, the load parameters need 

to be precisely determined for adequate stability analysis 

because power balances should continuously operate 

within the acceptable range even during disturbances. This 

paper primarily discusses the identification of load model 

parameters for stability studies. 

Power system load models can be classified into static 

and dynamic models. For static load representation, ZIP 

and exponent-based models are adopted for analysis, and 

their parameters express the voltage and frequency 

dependencies for power consumption [1, 3-4]. For dynamic 

load representation, there are several models that have been 

proposed in the literature, but two types of models are 

typically used. The first model represents the load recovery 

characteristics during disturbances with first-order dynamics 

for the active and reactive powers [5-6]. The other model 

employs induction motor models for the dynamic behavior 

of loads with a static model such as the ZIP model [7-11]. 

The inclusion of induction motors is required to analyze 

short-term voltage stability of the system because of their 

fast reactive power consumption during disturbances, with 

a comparatively low voltage level.  

In the literature, there are several identification methods 

that have been employed for load model parameters. In 

[12-13], linear and nonlinear least square methods were 

adopted for a model with first-order load recovery 

dynamics from the measurement data. In [7], a conjugate-

gradient-type stochastic approximation algorithm was 

adopted to estimate the parameters in a linearized induction 

motor model. In [10], a combined learning algorithm with 

a genetic algorithm (GA) and Levenberg-Marquardt (LM) 

method was applied to a composite load model to search 

the parameter space more efficiently. In [11], reducing the 

number of parameters for the composite model was 

discussed using the concept of trajectory sensitivity.  

This paper presents a parameter estimation method for a 

composite load model that applies hybrid optimization with 

particle swarm optimization (PSO) [14-16] and a complex 

method [17]. PSO algorithms have the advantages of 

simplicity in implementation and quick convergence to a 

reasonably good solution [18]. In [19-20], PSO had been 

proposed in combination with the Nelder-Mead (NM) 

simplex method to benefit from the highly accurate local 

search ability of NM simplex and powerful global search 

ability of PSO. This paper adopts the complex method to 

further improve this hybrid by replacing the local search 

method. The complex method is an improved version of 

simplex that increases the possibility of finding local 

optima.  

In this paper, a method using Runge-Kutta 4th-order 

numerical integration is employed to view the change in 

the time trajectories with respect to several parameter 

attempts from the hybrid-simulation-based optimization. 

To avoid integration divergence and unfeasible conditions, 
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two penalty terms are added to form the extended objective 

function with which the PSO-complex hybrid method 

searches the parameter space for the composite load model. 

Similar to other simulation-based search methods, PSO has 

difficulty in capturing the exact local minima, and there is 

a chance to simply pass better solutions in early iterations. 

To overcome these problems, the complex method is 

applied to the selected particles in a PSO iteration to 

replace a particle’s location after the objective function 

reaches a certain threshold value. This paper describes the 

numerical experiences when applying PSO-based methods 

for parameter identification to a composite load model. In 

addition, this paper includes a comparison between the 

results for the PSO-complex hybrid, PSO, and PSO-

simplex hybrid methods for minimizing the output error 

using the estimated parameters. 

 

 

2. Load Model Structure 

 

The load model considered has two components, the ZIP 

model for the static component and an induction motor for 

the dynamic component, as shown in Fig. 1.  

 

 

Fig. 1. Load model structure of interest 

 

The active and reactive powers of the ZIP load, PZIP and 

QZIP, can be expressed as 
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where PZIPo and QZIPo are the active and the reactive load 

demands when the magnitude of the voltage of the load bus 

is Vo as the reference. In (1) and (2), ap, bp, and cp are the 

coefficients for the ratio of constant impedance, constant 

current, and constant power portion to the active load, 

respectively, considering ap + bp + cp = 1; aq, bq, and cq are 

similarly defined for the reactive load, and these 

coefficients also sum to 1. 

For the dynamic load response, a 3rd-order induction 

motor model is employed. Rs and Xs are the stator resistance 

and reactance, respectively. Xm is the magnetization 

reactance, and Rr and Xr are the rotator resistance and 

reactance, respectively. V and I are the vectors for the 

motor terminal voltage and current, respectively, and s is 

the slip of the motor, which can be expressed as (ωo-ωm)/ωo. 

ωm and ωo are the rotor angular velocity and its 

synchronous velocity, respectively. The 3rd-order induction 

motor model equations are 
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where Ed ' and Eq' denote the direct and quadrature-axis 

components of the internal voltage, respectively; X' is the 

short-circuit reactance inside the transient rotor from the 

terminal; X is the rotor open-circuit reactance; To' is the 

transient open-circuit time constant; H is the inertia 

constant; Tm and Te are the mechanical and electrical torque, 

respectively; Id and Iq are the direct and quadrature-axis 

components of the injected motor current, respectively; and 

Vd and Vq are the direct and quadrature-axis components of 

the terminal voltage, respectively. In the above model, X, 

X', and To' are functions of Rs, Xs, Rr, Xr, and Xm. 

In the composite model, ten parameters are included, 

namely, ap, bp, aq, and bq for the ZIP load model; and Rs, Xs, 

Rr, Xr, Xm, and H for the induction motor model. As 

mentioned in [11], parameters Xs, Xm, and H can be 

regarded as constant to reduce the number of parameters 

because they have low sensitivities to the change in the 

time trajectories. Thus, they can be fixed to their respective 

values from the IEEE type-6 motor values: 0.094 [pu], 2.8 

[pu], and 0.93 [MW·s/MVA], respectively, and then the 

dimension of the solution space is reduced to seven. We 

note that these values are determined with the 

consideration of the chosen base value with the machine 

rating. 

 

 

3. Hybrid PSO-Complex-Based Load Model 

Parameter Identification 

 

3.1 Parameter identification problem for the load 

model 

 

When taking the prediction-error approach for parameter 

identification [2], the fitness function is the summation of 

the squared error between the measured outputs {P, Q} of 

the load and the simulated outputs, with parameters derived 

from the optimization, {P*, Q*}. The fitness function can 

be expressed mathematically as follows: 
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where NS is the number of samples. In [6], the simulated 

active and reactive powers can be obtained by adding 

together the ZIP and induction motor active powers as well 

as the reactive power. We note that when the objective 

function is smaller, better sets of parameters are found.  

Various optimization methods had been adopted through-

out the years for finding the best solutions for the nonlinear 

parameter estimation of dynamic systems. Many researchers 

applied global optimization methods because of the non-

convexities of the problems, leading to the issue of 

multiple local solutions. In addition, the recent trend to 

improve the reliability of optimization methods for 

searching is to make hybrids or combinations of search 

methods in order to obtain synergistic results and minimize 

the disadvantages of their standard forms.  

For parameter identification of the composite load model 

in [21], PSO was chosen to search the parameter space. 

The results of that paper showed that the overall 

optimization process had derived the parameters, and the 

model there follows the response of the active and reactive 

powers during a fault when compared with the actual data. 

However, in the authors’ experience, PSO itself cannot 

capture the exact local optima; therefore, it was expected to 

further reduce the fitness function by taking another 

solution procedure from the particles obtained in advance.  

When applying PSO or its variants as one of many 

simulation-based methods, a better approach would be to 

convert the inequality constraints for the physical limits of 

the model parameters or for the model’s properties into the 

objective function as the penalty terms. We adopt an 

extension of the fitness function, in order to avoid 

divergence in the numerical integration due to the 

inadequately selected induction parameters outside the 

feasible solution space. The extended fitness function is 

 

 1 1 infdivf f K b K b= + +ɶ  (9) 

 

where bdiv and binf are the binary variables for the numerical 

divergence and infeasibility, respectively, and can be either 

0 or 1. K1 and K2 are the penalty constants for the divergent 

and infeasible cases, respectively, and they are set for very 

large values. During the searching procedure, bdiv is set to 1 

for those cases where the trajectories obtained by the 

numerical integration of the motor dynamics with (3)-(7) 

diverge. In this paper, a Runge-Kutta 4th-order method is 

carried out for numerical integration. binf is set to 1 for 

those cases where the sum of ap and bp or aq and bq is 

greater than 1. In earlier iterations, the initial positions of 

some particles might be incorrectly selected, and then, the 

penalty terms can be activated. Using the extended 

objective function in (9) results in the division of the 

parameter space into several compartments with boundaries, 

and this fact may necessitate global optimization methods. 

3.2 Application of PSO-complex hybrid 

 

Our purpose is to propose a better searching method for 

parameter identification of the composite load model. 

There are possibly two ways to combine PSO and one of 

local search methods. The first combination simply adds 

the selected local search procedure after PSO ends. In [22], 

the NM-simplex method was chosen to further search for 

the local optimum from the selected particles at the final 

PSO iteration. The other combination combines local 

search into the PSO iteration. We take the latter combination 

as the hybridization scheme with a complex method, which 

is an advanced form of the simplex method.  

PSO is population-based and evolutionary in nature. 

PSO has memory in terms of the inertia weight, and the 

social exchange information simulates a commonly observed 

social behavior, where members of a group tend to follow 

the lead of the best of the group. Because PSO is simple in 

concept and economic in computational costs, it has a 

definite advantage over other evolutionary optimization 

techniques. Below are the particle position and velocity 

update equations involved in the PSO process with linearly 

decreasing inertia weight: 

 

 
1

1 1 2 2. . ( ) . ( )k k k k k

i i pbest i gbest iV wV C r p X C r p X+ = + − + −  (10) 

 
1 1k k k

i i iX X V+ += +  (11) 

 2 2 1 max max( ).( ) /( )w w w w k k k= + − −  (12) 

 

where Xi
k+1 and Xi

k+1 are the present and previous particle’s 

positions, respectively. Vi
k+1 and Vi

k are the present and 

previous particle’s velocities, respectively. C1 and C2 are 

the cognitive and social parameter coefficients, respectively, 

whereas r1 and r2 are random numbers ranging from 0 to 1. 

pk
pbest is the personal-best position of the particle, and pgbest 

is the global-best position of the group. w1 and w2 are the 

initial and final values of the inertia weight, respectively. 

kmax is the maximum number of iterations, and k is the 

present iteration number. 

The complex method is another efficient optimization 

algorithm searching from the initial simplexes for the 

optimization of either physical processes or mathematical 

functions [17]. Even though the complex method is a direct 

method, it does not require the gradients of the objective 

function for searching. Instead, the complex method 

operates with the information about the relative response 

rank associated with control levels. Like the NM-simplex 

method, the complex method solves the optimization 

problem by rescaling the original “n”-dimension by 

creating “n+1” vertex points at each iteration using four 

basic operations: reflection, expansion, contraction, and 

shrinkage, with the aim of moving away from the point of 

worst performance. The flow of these four operations is 

discussed in detail in [28,29,30].  

The need to improve the simplex method and become the 

complex method is presented in [17]. With the concavity of 
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nonlinear functions, the simplex method may be directed to 

a less feasible solution space during the reflection and 

expansion operations. To avoid this dilemma, the complex 

method was modified by adding condition checking before 

replacing the worst vertex during the reflection and 

expansion operations. The new conditions of the complex 

method compared with the simplex method as applied to a 

minimization problem are listed in Table 1. 

 

Table 1. Improvement of the simplex method to the 

complex method 

Simplex Method Complex Method 

Reflection  

fre 리 < Φ[fsecworst]  
frefl <min {Φ[fsecworst],  

Φ[fsecworst][1-sign(fsecworst)ε]}  

Expansion  

fexp < fbest  fexp < frefl < fbest 

 

In Table 1, frefl, fexp, fbest, fsecworst, and fworst are the 

objective functions of the reflection, expansion, best, 

second-worst, and worst points, respectively. For reflection 

in the complex method, ε represents the tolerance level and 

was set to 0.001 for the problems presented here. The 

added condition in the complex method assures that the 

solution search is directed to a more feasible region within 

the solution space before accepting the reflection and 

expansion points. 

With the global searching power of PSO and more 

advanced local search of the complex method, the PSO-

complex hybrid method is proposed by incorporating the 

complex method within the PSO procedure. Specifically, 

this method is outlined as follows and shown in Fig. 2: 

Step 1: Start with the PSO global search. As the group of 

initial particles is created (40 particles), the 

position and velocity of each particle are 

determined and correspondingly updated on the 

basis of the evaluation of the fitness function. Note 

that during the first few iterations of PSO, the 

group-best value is very high owing to the random 

selection of the initial points. 

Step 2: As the iteration progresses, PSO will be able to 

find a better group-best objective function value. 

Once it reaches a specified threshold value, the 

complex local search will be implemented for the 

top-five particles. During this search, the complex 

method can maximize its local search power 

because it started on a more feasible search space 

initially found by PSO. 

Step 3: The complex method will undergo its four basic 

operations: reflection, expansion, contraction, and 

shrinkage using n+1 particles, where n is the 

dimension of the parameter space. Via the complex 

method, the current location of the particles will be 

improved by moving away from the point of worst 

performance. 

Step 4: As the complex method improves the group-best 

value, the (n+1)th particle will be replaced by an 

improved location. This continues until the complex 

method reaches its maximum iteration and then 

proceeds with the next iteration of PSO. 

Step 5: The next iteration of PSO will continue its global 

search and will be coupled with the local search 

ability of the complex method until the stopping 

criteria are satisfied for the entire run of the PSO-

complex hybrid method. 

 

The proposed PSO-complex hybrid method aims to 

produce more satisfactory results. PSO focuses more on the 

global exploration of the best solution, whereas the 

complex method uses local exploitation, similar to the 

simplex method. Therefore, the hybrid method results in a 

mutual benefit of the two optimization methods; hence, 

there is a good chance of deriving more precise load model 

parameters to represent the actual measured active and 

reactive power responses to a fault. 

Unlike the previous optimization hybrids made with 

PSO, the complex method is integrated within the PSO 

process before each iteration ends. With this, the hybrid 

assures that a local optimum search is contributed by the 

complex method within the location of the best solution 

found by PSO. This new algorithm yields a better 

synergistic combination of PSO and the complex method. 

The global searching power of PSO and better local 

exploitation ability of the complex method are very well 

utilized in the algorithm. 

Moreover, their disadvantages are also minimized. For 

PSO, an extended fitness function is provided to avoid 

searching outside the feasible region. For the complex 

 

Fig. 2. Flow chart of the PSO-complex hybrid method 
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method, a good starting location for its local search was 

provided by PSO. The hybrid also promises simpler load 

model parameter searching by adopting the reduction of 

load model parameters by omitting the load model 

parameters with low sensitivity. With this, a more consistent 

set of parameters are found that can better satisfy the 

objective function. Therefore, the proposed PSO-complex 

hybrid method is very helpful for providing more precise 

load model parameters to represent the load system 

behavior for power system studies. 

 

 

4. Numerical Example 
 
In Fig. 3, a trajectory of voltage magnitude samples 

measured at a substation during a 3-phase short-circuit 

fault is illustrated, and this sample data is used in this paper 

to describe the advanced features of the proposed hybrid 

method. The sampling period was a half of a millisecond.  

Fig. 4 and Fig. 5 show the active and reactive powers, 

respectively, obtained by numerical integration of the 

original parameter set. Table 2 shows the range of values 

that limit the search space for the random initial points for 

the optimization methods. The three parameter estimation 

methods were applied to find the best set within the range. 

However, Xs, Xm, and H are fixed to the standard values, as 

described in Section 2, for the proposed PSO-complex 

hybrid method. This is done to reduce the number of load 

model parameters to be searched and to simplify the search 

process. 

 

 

Fig. 3. Trajectory of the voltage magnitude samples 

 

 

Fig. 4. Trajectory of the active power load 

 

Fig. 5. Trajectory of the reactive power load 

 

Table 2. Range of values for the estimated parameters 

Parameters Range of Values 

Rs 0.001  -  0.5 

Xs 0.001  -  1.0 

Xm 0.001  -  5.0  

Rr  0.001  -  0.5 

Xr 0.001  -  1.0 

ap 0  -  1.0 

H 1  -  5.0 

bp 0  -  1.0 

aq 0  -  1.0 

bq 0  -  1.0 

 

Table 3 lists the parameters used when applying the 

specified optimization method. The PSO parameters are 

based on the more generally used values, as in [18-20]. The 

simplex and complex control parameters are based on [20-

23] for the best local searching ability. The estimated 

parameters resulting from the optimization methods and 

objective function values obtained by each method are 

tabulated in Table 4. We note that the parameter sets were 

chosen on the basis of the best objective function value 

within 50 runs of each optimization method. 

As shown in Table 5, the objective function value was 

evaluated using the three optimization methods within 50 

runs. Because the PSO-complex hybrid method yielded the 

lowest objective function value (0.0206), it yields the best 

set of parameters as compared with the other two methods. 

Further, we find that the average objective function values 

of the two hybrid methods, PSO-simplex and PSO-

complex, are higher than the values for PSO. 

 

Table 3. Parameters for PSO, simplex, and complex 

Parameters Estimated Values 

PSO  

W1 (Initial Inertia Weight) 0.9 

W2 (Final Inertia Weight) 0.4 

c1 (Cognitive Parameter) 2 

c2 (Social Parameter) 2 

  

Simplex and Complex  

ρ (reflection coefficient) 1 

Ψ (expansion coefficient) 2 

γ (contraction coefficient) 0.5 

σ (shrinkage coefficient) 0.5 
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Table 4. Load model parameters using the three methods 

Param. PSO-complex PSO-simplex PSO 

Rs 0.1888 0.3149 0.2447 

Xs 0.0841 0.2074 0.1945 

Xm 2.5044 2.3960 2.0282 

Rr 0.2353 0.2001 0.1450 

Xr 0.3275 0.2074 0.1945 

H 1.0398 1.3201 1.3135 

ap 0.5821 0.6454 0.4362 

bp 0.3019 0.1691 0.4904 

cp 0.1160 0.1855 0.0733 

aq 0.3173 0.1380 0.0698 

bq 0.0758 0.2898 0.4624 

cq 0.5723 0.5723 0.5723 

 

The main advantage of the two hybrid methods is the 

addition of local optimum search. More importantly, the 

PSO-complex hybrid method yields the lowest average 

objective function (0.0483) within fifty independent runs. 

Moreover, we find that more consistent values for each 

parameter are obtained in each run of the PSO-complex 

hybrid method compared to the values for the other two 

optimization methods. 
 

Table 5. Objective function values for 50 runs by the three 

methods 

 Standard Deviation Average Obj. Function 

PSO 0.0341 0.0584 

PSO-Simplex 0.0329 0.0523 

PSO-Complex 0.0206 0.0483 

 

These results show better performance for the proposed 

PSO-complex hybrid method as compared to the other two 

optimization methods. This is attributed to the better local 

search ability of the complex method that was incorporated 

within the powerful global-search power of PSO, improved 

algorithm of the hybrid, and reduction in the number of 

parameters for our dynamic load model. 

To further show the effectiveness of the PSO-complex 

hybrid method, time series for the active and reactive 

powers obtained with the best load model parameters were 

compared with those of the sample data, as shown in Fig. 6 

and Fig. 7.  

The time-series waveform of the response of active and 

reactive powers using the PSO-complex hybrid method 

derived parameters matches the waveform of the measured 

sample data showing the load response during a 

disturbance. This simply implies that the PSO-complex 

hybrid method successfully determined the load model 

parameters to represent the behavior of the load in terms of 

the responses to the fault. Hence, the proposed hybrid 

method can be a very useful tool for determining the load 

model parameters for power systems stability studies. 

PSO has shown itself to be a very powerful optimization 

tool, and the objective function was improved and yielded 

a better chance of finding the best set of parameters for the 

load model with the hybridization of PSO with simplex in 

[18, 21-22]. With the previous studies cited to affirm the 

effectiveness of PSO and the improved conditions afforded 

by the complex method compared to the simplex method, 

the PSO-complex hybrid method justifiably shows the best 

performance for load model parameter searching among 

the two methods. 

 

Fig. 6. Active power sample data vs. estimated active 

power (using PSO-complex derived parameters) 

 

 

Fig. 7. Reactive power sample data vs. estimated reactive 

power (using PSO-Complex derived parameters) 

 

 

5. Conclusion 

 

This paper presents the application of a hybrid PSO-

complex method for determining the parameters of a 

composite load model. The method explores the parameter 

space using the standard PSO initially, but after the 

objective function reaches a threshold value, the complex 

method is employed to replace the worst selected particle 

to aggressively search around the particle. Through a 

comparison with two other simulation-based methods, the 

proposed algorithm successfully and effectively determined 

the load model parameters and adequately depicted the 

behavior of load change during disturbances. 
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